Matches in SemOpenAlex for { <https://semopenalex.org/work/W2606013205> ?p ?o ?g. }
- W2606013205 endingPage "4159" @default.
- W2606013205 startingPage "4125" @default.
- W2606013205 abstract "Abstract. The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe) is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1 ± 0. 3 Tmol P yr−1 (or, in carbon units, 10. 3 ± 0. 4 Pg C yr−1) and 171. ± 3. Tmol Si yr−1. We diagnose the phosphorus and opal exports supported by aeolian, sedimentary, and hydrothermal iron. The geographic patterns of the export supported by each iron type are well constrained across the family of state estimates. Sedimentary-iron-supported export is important in shelf and large-scale upwelling regions, while hydrothermal iron contributes to export mostly in the Southern Ocean. The fraction of the global export supported by a given iron type varies systematically with its fractional contribution to the total iron source. Aeolian iron is most efficient in supporting export in the sense that its fractional contribution to export exceeds its fractional contribution to the total source. Per source-injected molecule, aeolian iron supports 3. 1 ± 0. 8 times more phosphorus export and 2. 0 ± 0. 5 times more opal export than the other iron types. Conversely, per injected molecule, sedimentary and hydrothermal iron support 2. 3 ± 0. 6 and 4. ± 2. times less phosphorus export, and 1. 9 ± 0. 5 and 2. ± 1. times less opal export than the other iron types." @default.
- W2606013205 created "2017-04-28" @default.
- W2606013205 creator A5015471697 @default.
- W2606013205 creator A5075683232 @default.
- W2606013205 date "2017-09-21" @default.
- W2606013205 modified "2023-10-03" @default.
- W2606013205 title "Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles" @default.
- W2606013205 cites W1489297152 @default.
- W2606013205 cites W1502045764 @default.
- W2606013205 cites W1522127495 @default.
- W2606013205 cites W1530089516 @default.
- W2606013205 cites W1586697640 @default.
- W2606013205 cites W1594069438 @default.
- W2606013205 cites W1637123222 @default.
- W2606013205 cites W1644321256 @default.
- W2606013205 cites W1650638879 @default.
- W2606013205 cites W1769233144 @default.
- W2606013205 cites W1860322032 @default.
- W2606013205 cites W1887271353 @default.
- W2606013205 cites W1889293123 @default.
- W2606013205 cites W1930555864 @default.
- W2606013205 cites W1941417991 @default.
- W2606013205 cites W1966464581 @default.
- W2606013205 cites W1967993114 @default.
- W2606013205 cites W1979705183 @default.
- W2606013205 cites W1980894197 @default.
- W2606013205 cites W1981156614 @default.
- W2606013205 cites W1991635406 @default.
- W2606013205 cites W1993013648 @default.
- W2606013205 cites W1998484602 @default.
- W2606013205 cites W2001040297 @default.
- W2606013205 cites W2007446886 @default.
- W2606013205 cites W2018782533 @default.
- W2606013205 cites W2019476144 @default.
- W2606013205 cites W2025214123 @default.
- W2606013205 cites W2026551603 @default.
- W2606013205 cites W2028722328 @default.
- W2606013205 cites W2035265108 @default.
- W2606013205 cites W2035631083 @default.
- W2606013205 cites W2036287736 @default.
- W2606013205 cites W2036677156 @default.
- W2606013205 cites W2040232619 @default.
- W2606013205 cites W2042626509 @default.
- W2606013205 cites W2047870588 @default.
- W2606013205 cites W2048583402 @default.
- W2606013205 cites W2052580213 @default.
- W2606013205 cites W2067597616 @default.
- W2606013205 cites W2067961116 @default.
- W2606013205 cites W2070712681 @default.
- W2606013205 cites W2077295689 @default.
- W2606013205 cites W2078708516 @default.
- W2606013205 cites W2080119881 @default.
- W2606013205 cites W2080157491 @default.
- W2606013205 cites W2081378859 @default.
- W2606013205 cites W2089650688 @default.
- W2606013205 cites W2090611364 @default.
- W2606013205 cites W2090970809 @default.
- W2606013205 cites W2095119391 @default.
- W2606013205 cites W2098527552 @default.
- W2606013205 cites W2098902157 @default.
- W2606013205 cites W2107520221 @default.
- W2606013205 cites W2109112689 @default.
- W2606013205 cites W2110293632 @default.
- W2606013205 cites W2111298353 @default.
- W2606013205 cites W2114631056 @default.
- W2606013205 cites W2123500049 @default.
- W2606013205 cites W2124462761 @default.
- W2606013205 cites W2135476338 @default.
- W2606013205 cites W2139577180 @default.
- W2606013205 cites W2140702236 @default.
- W2606013205 cites W2143102477 @default.
- W2606013205 cites W2143252417 @default.
- W2606013205 cites W2145668011 @default.
- W2606013205 cites W2148343249 @default.
- W2606013205 cites W2150097329 @default.
- W2606013205 cites W2154494747 @default.
- W2606013205 cites W2156995048 @default.
- W2606013205 cites W2157959209 @default.
- W2606013205 cites W2162013661 @default.
- W2606013205 cites W2165806421 @default.
- W2606013205 cites W2170671093 @default.
- W2606013205 cites W2170984586 @default.
- W2606013205 cites W2171316695 @default.
- W2606013205 cites W2171643577 @default.
- W2606013205 cites W2171660899 @default.
- W2606013205 cites W2228781294 @default.
- W2606013205 cites W2258454291 @default.
- W2606013205 cites W2477213315 @default.
- W2606013205 cites W2480481978 @default.
- W2606013205 cites W2487523935 @default.
- W2606013205 cites W2522818157 @default.
- W2606013205 cites W2529828653 @default.
- W2606013205 cites W2556413553 @default.
- W2606013205 cites W2789272273 @default.
- W2606013205 cites W4235091041 @default.
- W2606013205 cites W4255319573 @default.
- W2606013205 cites W4377077256 @default.
- W2606013205 doi "https://doi.org/10.5194/bg-14-4125-2017" @default.