Matches in SemOpenAlex for { <https://semopenalex.org/work/W2606234828> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2606234828 endingPage "76" @default.
- W2606234828 startingPage "64" @default.
- W2606234828 abstract "Abstract Multilevel thresholding is one of the most important areas in the field of image segmentation. However, the computational complexity of multilevel thresholding increases exponentially with the increasing number of thresholds. To overcome this drawback, a new approach of multilevel thresholding based on Grey Wolf Optimizer (GWO) is proposed in this paper. GWO is inspired from the social and hunting behaviour of the grey wolves. This metaheuristic algorithm is applied to multilevel thresholding problem using Kapur's entropy and Otsu's between class variance functions. The proposed method is tested on a set of standard test images. The performances of the proposed method are then compared with improved versions of PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based multilevel thresholding methods. The quality of the segmented images is computed using Mean Structural SIMilarity (MSSIM) index. Experimental results suggest that the proposed method is more stable and yields solutions of higher quality than PSO and BFO based methods. Moreover, the proposed method is found to be faster than BFO but slower than the PSO based method." @default.
- W2606234828 created "2017-04-28" @default.
- W2606234828 creator A5047103341 @default.
- W2606234828 creator A5057463296 @default.
- W2606234828 date "2017-11-01" @default.
- W2606234828 modified "2023-10-06" @default.
- W2606234828 title "Multilevel thresholding using grey wolf optimizer for image segmentation" @default.
- W2606234828 cites W1752885120 @default.
- W2606234828 cites W1970800786 @default.
- W2606234828 cites W1972544340 @default.
- W2606234828 cites W1979393293 @default.
- W2606234828 cites W1981166861 @default.
- W2606234828 cites W1994087229 @default.
- W2606234828 cites W1995875735 @default.
- W2606234828 cites W1996248842 @default.
- W2606234828 cites W2007083035 @default.
- W2606234828 cites W2008748102 @default.
- W2606234828 cites W2045753467 @default.
- W2606234828 cites W2050787737 @default.
- W2606234828 cites W2056707729 @default.
- W2606234828 cites W2058772068 @default.
- W2606234828 cites W2061438946 @default.
- W2606234828 cites W2069385985 @default.
- W2606234828 cites W2083970667 @default.
- W2606234828 cites W2092340766 @default.
- W2606234828 cites W2094963933 @default.
- W2606234828 cites W2104447397 @default.
- W2606234828 cites W2120627761 @default.
- W2606234828 cites W2122122715 @default.
- W2606234828 cites W2132116135 @default.
- W2606234828 cites W2133059825 @default.
- W2606234828 cites W2151939106 @default.
- W2606234828 cites W2170741744 @default.
- W2606234828 cites W2203598720 @default.
- W2606234828 cites W2517312321 @default.
- W2606234828 doi "https://doi.org/10.1016/j.eswa.2017.04.029" @default.
- W2606234828 hasPublicationYear "2017" @default.
- W2606234828 type Work @default.
- W2606234828 sameAs 2606234828 @default.
- W2606234828 citedByCount "218" @default.
- W2606234828 countsByYear W26062348282017 @default.
- W2606234828 countsByYear W26062348282018 @default.
- W2606234828 countsByYear W26062348282019 @default.
- W2606234828 countsByYear W26062348282020 @default.
- W2606234828 countsByYear W26062348282021 @default.
- W2606234828 countsByYear W26062348282022 @default.
- W2606234828 countsByYear W26062348282023 @default.
- W2606234828 crossrefType "journal-article" @default.
- W2606234828 hasAuthorship W2606234828A5047103341 @default.
- W2606234828 hasAuthorship W2606234828A5057463296 @default.
- W2606234828 hasConcept C115961682 @default.
- W2606234828 hasConcept C124504099 @default.
- W2606234828 hasConcept C136943445 @default.
- W2606234828 hasConcept C153180895 @default.
- W2606234828 hasConcept C154945302 @default.
- W2606234828 hasConcept C191178318 @default.
- W2606234828 hasConcept C202577368 @default.
- W2606234828 hasConcept C2994222927 @default.
- W2606234828 hasConcept C31972630 @default.
- W2606234828 hasConcept C41008148 @default.
- W2606234828 hasConcept C89600930 @default.
- W2606234828 hasConcept C9417928 @default.
- W2606234828 hasConceptScore W2606234828C115961682 @default.
- W2606234828 hasConceptScore W2606234828C124504099 @default.
- W2606234828 hasConceptScore W2606234828C136943445 @default.
- W2606234828 hasConceptScore W2606234828C153180895 @default.
- W2606234828 hasConceptScore W2606234828C154945302 @default.
- W2606234828 hasConceptScore W2606234828C191178318 @default.
- W2606234828 hasConceptScore W2606234828C202577368 @default.
- W2606234828 hasConceptScore W2606234828C2994222927 @default.
- W2606234828 hasConceptScore W2606234828C31972630 @default.
- W2606234828 hasConceptScore W2606234828C41008148 @default.
- W2606234828 hasConceptScore W2606234828C89600930 @default.
- W2606234828 hasConceptScore W2606234828C9417928 @default.
- W2606234828 hasLocation W26062348281 @default.
- W2606234828 hasOpenAccess W2606234828 @default.
- W2606234828 hasPrimaryLocation W26062348281 @default.
- W2606234828 hasRelatedWork W2057727798 @default.
- W2606234828 hasRelatedWork W2135219050 @default.
- W2606234828 hasRelatedWork W2139440936 @default.
- W2606234828 hasRelatedWork W2347731544 @default.
- W2606234828 hasRelatedWork W2350588503 @default.
- W2606234828 hasRelatedWork W2369644788 @default.
- W2606234828 hasRelatedWork W2388245577 @default.
- W2606234828 hasRelatedWork W2551390060 @default.
- W2606234828 hasRelatedWork W2963371377 @default.
- W2606234828 hasRelatedWork W3166387924 @default.
- W2606234828 hasVolume "86" @default.
- W2606234828 isParatext "false" @default.
- W2606234828 isRetracted "false" @default.
- W2606234828 magId "2606234828" @default.
- W2606234828 workType "article" @default.