Matches in SemOpenAlex for { <https://semopenalex.org/work/W2606247356> ?p ?o ?g. }
- W2606247356 endingPage "20" @default.
- W2606247356 startingPage "1" @default.
- W2606247356 abstract "The weighed total least square (WTLS) estimate is very sensitive to the outliers in the partial EIV model. A new procedure for detecting outliers based on the data-snooping is presented in this paper. Firstly, a two-step iterated method of computing the WTLS estimates for the partial EIV model based on the standard LS theory is proposed. Secondly, the corresponding w-test statistics are constructed to detect outliers while the observations and coefficient matrix are contaminated with outliers, and a specific algorithm for detecting outliers is suggested. When the variance factor is unknown, it may be estimated by the least median squares (LMS) method. At last, the simulated data and real data about two-dimensional affine transformation are analyzed. The numerical results show that the new test procedure is able to judge that the outliers locate in x component, y component or both components in coordinates while the observations and coefficient matrix are contaminated with outliers" @default.
- W2606247356 created "2017-04-28" @default.
- W2606247356 creator A5028445459 @default.
- W2606247356 creator A5030135401 @default.
- W2606247356 date "2017-03-01" @default.
- W2606247356 modified "2023-10-16" @default.
- W2606247356 title "OUTLIER DETECTION IN PARTIAL ERRORS-IN-VARIABLES MODEL" @default.
- W2606247356 cites W1971585425 @default.
- W2606247356 cites W1976377934 @default.
- W2606247356 cites W1978968684 @default.
- W2606247356 cites W1981527201 @default.
- W2606247356 cites W1981883412 @default.
- W2606247356 cites W1982860975 @default.
- W2606247356 cites W2005262523 @default.
- W2606247356 cites W2008229822 @default.
- W2606247356 cites W2013713618 @default.
- W2606247356 cites W2017477922 @default.
- W2606247356 cites W2032082196 @default.
- W2606247356 cites W2042307848 @default.
- W2606247356 cites W2043489112 @default.
- W2606247356 cites W2044669574 @default.
- W2606247356 cites W2052076296 @default.
- W2606247356 cites W2055125872 @default.
- W2606247356 cites W2069084893 @default.
- W2606247356 cites W2073364127 @default.
- W2606247356 cites W2074552220 @default.
- W2606247356 cites W2082028360 @default.
- W2606247356 cites W2084423326 @default.
- W2606247356 cites W2088874147 @default.
- W2606247356 cites W2145737580 @default.
- W2606247356 cites W3089077440 @default.
- W2606247356 doi "https://doi.org/10.1590/s1982-21702017000100001" @default.
- W2606247356 hasPublicationYear "2017" @default.
- W2606247356 type Work @default.
- W2606247356 sameAs 2606247356 @default.
- W2606247356 citedByCount "2" @default.
- W2606247356 countsByYear W26062473562019 @default.
- W2606247356 countsByYear W26062473562020 @default.
- W2606247356 crossrefType "journal-article" @default.
- W2606247356 hasAuthorship W2606247356A5028445459 @default.
- W2606247356 hasAuthorship W2606247356A5030135401 @default.
- W2606247356 hasBestOaLocation W26062473561 @default.
- W2606247356 hasConcept C104317684 @default.
- W2606247356 hasConcept C105795698 @default.
- W2606247356 hasConcept C106487976 @default.
- W2606247356 hasConcept C11413529 @default.
- W2606247356 hasConcept C121332964 @default.
- W2606247356 hasConcept C134306372 @default.
- W2606247356 hasConcept C140479938 @default.
- W2606247356 hasConcept C153180895 @default.
- W2606247356 hasConcept C154945302 @default.
- W2606247356 hasConcept C158693339 @default.
- W2606247356 hasConcept C159985019 @default.
- W2606247356 hasConcept C185592680 @default.
- W2606247356 hasConcept C192562407 @default.
- W2606247356 hasConcept C193252679 @default.
- W2606247356 hasConcept C202444582 @default.
- W2606247356 hasConcept C204241405 @default.
- W2606247356 hasConcept C22354355 @default.
- W2606247356 hasConcept C27438332 @default.
- W2606247356 hasConcept C2780985081 @default.
- W2606247356 hasConcept C33923547 @default.
- W2606247356 hasConcept C41008148 @default.
- W2606247356 hasConcept C44465124 @default.
- W2606247356 hasConcept C55493867 @default.
- W2606247356 hasConcept C60866291 @default.
- W2606247356 hasConcept C62520636 @default.
- W2606247356 hasConcept C739882 @default.
- W2606247356 hasConcept C79337645 @default.
- W2606247356 hasConcept C92757383 @default.
- W2606247356 hasConceptScore W2606247356C104317684 @default.
- W2606247356 hasConceptScore W2606247356C105795698 @default.
- W2606247356 hasConceptScore W2606247356C106487976 @default.
- W2606247356 hasConceptScore W2606247356C11413529 @default.
- W2606247356 hasConceptScore W2606247356C121332964 @default.
- W2606247356 hasConceptScore W2606247356C134306372 @default.
- W2606247356 hasConceptScore W2606247356C140479938 @default.
- W2606247356 hasConceptScore W2606247356C153180895 @default.
- W2606247356 hasConceptScore W2606247356C154945302 @default.
- W2606247356 hasConceptScore W2606247356C158693339 @default.
- W2606247356 hasConceptScore W2606247356C159985019 @default.
- W2606247356 hasConceptScore W2606247356C185592680 @default.
- W2606247356 hasConceptScore W2606247356C192562407 @default.
- W2606247356 hasConceptScore W2606247356C193252679 @default.
- W2606247356 hasConceptScore W2606247356C202444582 @default.
- W2606247356 hasConceptScore W2606247356C204241405 @default.
- W2606247356 hasConceptScore W2606247356C22354355 @default.
- W2606247356 hasConceptScore W2606247356C27438332 @default.
- W2606247356 hasConceptScore W2606247356C2780985081 @default.
- W2606247356 hasConceptScore W2606247356C33923547 @default.
- W2606247356 hasConceptScore W2606247356C41008148 @default.
- W2606247356 hasConceptScore W2606247356C44465124 @default.
- W2606247356 hasConceptScore W2606247356C55493867 @default.
- W2606247356 hasConceptScore W2606247356C60866291 @default.
- W2606247356 hasConceptScore W2606247356C62520636 @default.
- W2606247356 hasConceptScore W2606247356C739882 @default.
- W2606247356 hasConceptScore W2606247356C79337645 @default.
- W2606247356 hasConceptScore W2606247356C92757383 @default.