Matches in SemOpenAlex for { <https://semopenalex.org/work/W2606320521> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2606320521 abstract "In this paper, we show how using publicly available data streams and machine learning algorithms one can develop practical data driven services with no input from domain experts as a form of prior knowledge. We report the initial steps toward development of a real estate portal in Switzerland. Based on continuous web crawling of publicly available real estate advertisements and using building data from Open Street Map, we developed a system, where we roughly estimate the rental and sale price indexes of 1.7 million buildings across the country. In addition to these rough estimates, we developed a web based API for accurate automated valuation of rental prices of individual properties and spatial sensitivity analysis of rental market. We tested several established function approximation methods against the test data to check the quality of the rental price estimations and based on our experiments, Random Forest gives very reasonable results with the median absolute relative error of 6.57 percent, which is comparable with the state of the art in the industry. We argue that while recently there have been successful cases of real estate portals, which are based on Big Data, majority of the existing solutions are expensive, limited to certain users and mostly with non-transparent underlying systems. As an alternative we discuss, how using the crawled data sets and other open data sets provided from different institutes it is easily possible to develop data driven services for spatial and temporal sensitivity analysis in the real estate market to be used for different stakeholders. We believe that this kind of digital literacy can disrupt many other existing business concepts across many domains." @default.
- W2606320521 created "2017-04-28" @default.
- W2606320521 creator A5064894817 @default.
- W2606320521 date "2017-03-30" @default.
- W2606320521 modified "2023-09-27" @default.
- W2606320521 title "Urban Data Streams and Machine Learning: A Case of Swiss Real Estate Market." @default.
- W2606320521 cites W129305155 @default.
- W2606320521 cites W2038274993 @default.
- W2606320521 cites W2051688880 @default.
- W2606320521 cites W2101234009 @default.
- W2606320521 cites W2123866109 @default.
- W2606320521 cites W2911546748 @default.
- W2606320521 cites W2911964244 @default.
- W2606320521 cites W65738273 @default.
- W2606320521 hasPublicationYear "2017" @default.
- W2606320521 type Work @default.
- W2606320521 sameAs 2606320521 @default.
- W2606320521 citedByCount "0" @default.
- W2606320521 crossrefType "posted-content" @default.
- W2606320521 hasAuthorship W2606320521A5064894817 @default.
- W2606320521 hasConcept C10138342 @default.
- W2606320521 hasConcept C119857082 @default.
- W2606320521 hasConcept C124101348 @default.
- W2606320521 hasConcept C127413603 @default.
- W2606320521 hasConcept C144133560 @default.
- W2606320521 hasConcept C147176958 @default.
- W2606320521 hasConcept C149782125 @default.
- W2606320521 hasConcept C154945302 @default.
- W2606320521 hasConcept C162324750 @default.
- W2606320521 hasConcept C186027771 @default.
- W2606320521 hasConcept C2522767166 @default.
- W2606320521 hasConcept C41008148 @default.
- W2606320521 hasConcept C75684735 @default.
- W2606320521 hasConcept C82279013 @default.
- W2606320521 hasConcept C85502023 @default.
- W2606320521 hasConcept C89198739 @default.
- W2606320521 hasConceptScore W2606320521C10138342 @default.
- W2606320521 hasConceptScore W2606320521C119857082 @default.
- W2606320521 hasConceptScore W2606320521C124101348 @default.
- W2606320521 hasConceptScore W2606320521C127413603 @default.
- W2606320521 hasConceptScore W2606320521C144133560 @default.
- W2606320521 hasConceptScore W2606320521C147176958 @default.
- W2606320521 hasConceptScore W2606320521C149782125 @default.
- W2606320521 hasConceptScore W2606320521C154945302 @default.
- W2606320521 hasConceptScore W2606320521C162324750 @default.
- W2606320521 hasConceptScore W2606320521C186027771 @default.
- W2606320521 hasConceptScore W2606320521C2522767166 @default.
- W2606320521 hasConceptScore W2606320521C41008148 @default.
- W2606320521 hasConceptScore W2606320521C75684735 @default.
- W2606320521 hasConceptScore W2606320521C82279013 @default.
- W2606320521 hasConceptScore W2606320521C85502023 @default.
- W2606320521 hasConceptScore W2606320521C89198739 @default.
- W2606320521 hasLocation W26063205211 @default.
- W2606320521 hasOpenAccess W2606320521 @default.
- W2606320521 hasPrimaryLocation W26063205211 @default.
- W2606320521 hasRelatedWork W1557168064 @default.
- W2606320521 hasRelatedWork W1982233419 @default.
- W2606320521 hasRelatedWork W2253886066 @default.
- W2606320521 hasRelatedWork W2461100794 @default.
- W2606320521 hasRelatedWork W2736337626 @default.
- W2606320521 hasRelatedWork W2764137828 @default.
- W2606320521 hasRelatedWork W2901952315 @default.
- W2606320521 hasRelatedWork W2971456958 @default.
- W2606320521 hasRelatedWork W2972574549 @default.
- W2606320521 hasRelatedWork W3002632476 @default.
- W2606320521 hasRelatedWork W3034159089 @default.
- W2606320521 hasRelatedWork W3106269507 @default.
- W2606320521 hasRelatedWork W3124329704 @default.
- W2606320521 hasRelatedWork W3132460254 @default.
- W2606320521 hasRelatedWork W3159731117 @default.
- W2606320521 hasRelatedWork W3161691425 @default.
- W2606320521 hasRelatedWork W3195138765 @default.
- W2606320521 hasRelatedWork W3209991771 @default.
- W2606320521 hasRelatedWork W3211634340 @default.
- W2606320521 isParatext "false" @default.
- W2606320521 isRetracted "false" @default.
- W2606320521 magId "2606320521" @default.
- W2606320521 workType "article" @default.