Matches in SemOpenAlex for { <https://semopenalex.org/work/W2606840594> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2606840594 abstract "Recently, Convolutional Neural Networks have shown promising results for 3D geometry prediction. They can make predictions from very little input data such as a single color image. A major limitation of such approaches is that they only predict a coarse resolution voxel grid, which does not capture the surface of the objects well. We propose a general framework, called hierarchical surface prediction (HSP), which facilitates prediction of high resolution voxel grids. The main insight is that it is sufficient to predict high resolution voxels around the predicted surfaces. The exterior and interior of the objects can be represented with coarse resolution voxels. Our approach is not dependent on a specific input type. We show results for geometry prediction from color images, depth images and shape completion from partial voxel grids. Our analysis shows that our high resolution predictions are more accurate than low resolution predictions." @default.
- W2606840594 created "2017-04-28" @default.
- W2606840594 creator A5001594573 @default.
- W2606840594 creator A5029932788 @default.
- W2606840594 creator A5070290758 @default.
- W2606840594 date "2017-10-01" @default.
- W2606840594 modified "2023-10-16" @default.
- W2606840594 title "Hierarchical Surface Prediction for 3D Object Reconstruction" @default.
- W2606840594 cites W1578985305 @default.
- W2606840594 cites W1853039947 @default.
- W2606840594 cites W1867429401 @default.
- W2606840594 cites W1893912098 @default.
- W2606840594 cites W1992178727 @default.
- W2606840594 cites W2009422376 @default.
- W2606840594 cites W2013345945 @default.
- W2606840594 cites W2013483851 @default.
- W2606840594 cites W2046629160 @default.
- W2606840594 cites W2066090933 @default.
- W2606840594 cites W2071398263 @default.
- W2606840594 cites W2104697781 @default.
- W2606840594 cites W2119493293 @default.
- W2606840594 cites W2138165282 @default.
- W2606840594 cites W2167335287 @default.
- W2606840594 cites W2168545424 @default.
- W2606840594 cites W2237250383 @default.
- W2606840594 cites W2293078015 @default.
- W2606840594 cites W2342277278 @default.
- W2606840594 cites W2495603374 @default.
- W2606840594 cites W2557269700 @default.
- W2606840594 cites W2963564867 @default.
- W2606840594 cites W2963739349 @default.
- W2606840594 cites W2964137676 @default.
- W2606840594 cites W4233857083 @default.
- W2606840594 doi "https://doi.org/10.1109/3dv.2017.00054" @default.
- W2606840594 hasPublicationYear "2017" @default.
- W2606840594 type Work @default.
- W2606840594 sameAs 2606840594 @default.
- W2606840594 citedByCount "205" @default.
- W2606840594 countsByYear W26068405942017 @default.
- W2606840594 countsByYear W26068405942018 @default.
- W2606840594 countsByYear W26068405942019 @default.
- W2606840594 countsByYear W26068405942020 @default.
- W2606840594 countsByYear W26068405942021 @default.
- W2606840594 countsByYear W26068405942022 @default.
- W2606840594 countsByYear W26068405942023 @default.
- W2606840594 crossrefType "proceedings-article" @default.
- W2606840594 hasAuthorship W2606840594A5001594573 @default.
- W2606840594 hasAuthorship W2606840594A5029932788 @default.
- W2606840594 hasAuthorship W2606840594A5070290758 @default.
- W2606840594 hasBestOaLocation W26068405942 @default.
- W2606840594 hasConcept C11413529 @default.
- W2606840594 hasConcept C138268822 @default.
- W2606840594 hasConcept C153180895 @default.
- W2606840594 hasConcept C154945302 @default.
- W2606840594 hasConcept C187691185 @default.
- W2606840594 hasConcept C205372480 @default.
- W2606840594 hasConcept C2524010 @default.
- W2606840594 hasConcept C2776799497 @default.
- W2606840594 hasConcept C2781238097 @default.
- W2606840594 hasConcept C31972630 @default.
- W2606840594 hasConcept C33923547 @default.
- W2606840594 hasConcept C41008148 @default.
- W2606840594 hasConcept C54170458 @default.
- W2606840594 hasConcept C81363708 @default.
- W2606840594 hasConceptScore W2606840594C11413529 @default.
- W2606840594 hasConceptScore W2606840594C138268822 @default.
- W2606840594 hasConceptScore W2606840594C153180895 @default.
- W2606840594 hasConceptScore W2606840594C154945302 @default.
- W2606840594 hasConceptScore W2606840594C187691185 @default.
- W2606840594 hasConceptScore W2606840594C205372480 @default.
- W2606840594 hasConceptScore W2606840594C2524010 @default.
- W2606840594 hasConceptScore W2606840594C2776799497 @default.
- W2606840594 hasConceptScore W2606840594C2781238097 @default.
- W2606840594 hasConceptScore W2606840594C31972630 @default.
- W2606840594 hasConceptScore W2606840594C33923547 @default.
- W2606840594 hasConceptScore W2606840594C41008148 @default.
- W2606840594 hasConceptScore W2606840594C54170458 @default.
- W2606840594 hasConceptScore W2606840594C81363708 @default.
- W2606840594 hasLocation W26068405941 @default.
- W2606840594 hasLocation W26068405942 @default.
- W2606840594 hasOpenAccess W2606840594 @default.
- W2606840594 hasPrimaryLocation W26068405941 @default.
- W2606840594 hasRelatedWork W1837097281 @default.
- W2606840594 hasRelatedWork W1966410754 @default.
- W2606840594 hasRelatedWork W2007544051 @default.
- W2606840594 hasRelatedWork W2016398835 @default.
- W2606840594 hasRelatedWork W2091724545 @default.
- W2606840594 hasRelatedWork W2325242284 @default.
- W2606840594 hasRelatedWork W2363840281 @default.
- W2606840594 hasRelatedWork W2417235025 @default.
- W2606840594 hasRelatedWork W2975200075 @default.
- W2606840594 hasRelatedWork W2999136174 @default.
- W2606840594 isParatext "false" @default.
- W2606840594 isRetracted "false" @default.
- W2606840594 magId "2606840594" @default.
- W2606840594 workType "article" @default.