Matches in SemOpenAlex for { <https://semopenalex.org/work/W2606946441> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2606946441 abstract "We propose an ensemble based seismic inversion framework to estimate static and dynamic reservoir parameters such as saturation, pressure and porosity fields using seismic data. The proposed method has certain novelties, in terms of the choice of seismic data, as well as uncertainty quantification of the estimates. Further, the method uses reservoir-engineering data as the prior information (such as pressure-saturation data) from reservoir simulation model to constrain the inversion process. Many conventional seismic inversion algorithms are deterministic in nature, and thus they pay less attention to uncertainty quantification. To quantify the uncertainties in the estimates, we adopt an iterative ensemble smoother as the inversion algorithm. Compared to the conventional deterministic inversion algorithms, this ensemble-based method is a derivative-free and non-intrusive approach, and has better capacity of uncertainty quantification. On the other hand, inverted seismic parameters, such as acoustic impedance, are often adopted as the data in inversion. In doing so, extra uncertainties may arise during the inversion processes. Here, we avoid such intermediate inversion processes by adopting amplitude versus angle (AVA) data. To handle the big-data problem in the AVA inversion process, we adopt a wavelet based sparse representation procedure (Luo et al., 2016). Precisely, we apply a discrete wavelet transform to the AVA data, and estimate noise in the resulting wavelet coefficients. We then use the leading wavelet coefficients above a certain threshold value as the data in inversion. We apply the proposed framework to a 2D synthetic model for a proof-of-concept study. This reservoir model consists of three phases (water, oil and gas), and is a vertical section of a 3D Norne field model. We also test the performance of the framework in the 3D Brugge benchmark case that consists of two phases (water and oil). The numerical results from both cases indicate that the proposed framework can integrate the reservoir-engineering data as prior knowledge with seismic data, while achieving reasonably good estimates of both static and dynamic reservoir variables." @default.
- W2606946441 created "2017-04-28" @default.
- W2606946441 creator A5023325001 @default.
- W2606946441 creator A5029510051 @default.
- W2606946441 creator A5038208817 @default.
- W2606946441 date "2017-04-24" @default.
- W2606946441 modified "2023-09-26" @default.
- W2606946441 title "Estimation of Pressure-Saturation and Porosity Fields from Seismic AVA Data Using an Ensemble Based Method" @default.
- W2606946441 doi "https://doi.org/10.3997/2214-4609.201700354" @default.
- W2606946441 hasPublicationYear "2017" @default.
- W2606946441 type Work @default.
- W2606946441 sameAs 2606946441 @default.
- W2606946441 citedByCount "2" @default.
- W2606946441 countsByYear W26069464412017 @default.
- W2606946441 crossrefType "proceedings-article" @default.
- W2606946441 hasAuthorship W2606946441A5023325001 @default.
- W2606946441 hasAuthorship W2606946441A5029510051 @default.
- W2606946441 hasAuthorship W2606946441A5038208817 @default.
- W2606946441 hasConcept C11413529 @default.
- W2606946441 hasConcept C127313418 @default.
- W2606946441 hasConcept C154945302 @default.
- W2606946441 hasConcept C159737794 @default.
- W2606946441 hasConcept C160920958 @default.
- W2606946441 hasConcept C165205528 @default.
- W2606946441 hasConcept C1893757 @default.
- W2606946441 hasConcept C2524010 @default.
- W2606946441 hasConcept C33923547 @default.
- W2606946441 hasConcept C39267094 @default.
- W2606946441 hasConcept C41008148 @default.
- W2606946441 hasConcept C47432892 @default.
- W2606946441 hasConcept C77928131 @default.
- W2606946441 hasConceptScore W2606946441C11413529 @default.
- W2606946441 hasConceptScore W2606946441C127313418 @default.
- W2606946441 hasConceptScore W2606946441C154945302 @default.
- W2606946441 hasConceptScore W2606946441C159737794 @default.
- W2606946441 hasConceptScore W2606946441C160920958 @default.
- W2606946441 hasConceptScore W2606946441C165205528 @default.
- W2606946441 hasConceptScore W2606946441C1893757 @default.
- W2606946441 hasConceptScore W2606946441C2524010 @default.
- W2606946441 hasConceptScore W2606946441C33923547 @default.
- W2606946441 hasConceptScore W2606946441C39267094 @default.
- W2606946441 hasConceptScore W2606946441C41008148 @default.
- W2606946441 hasConceptScore W2606946441C47432892 @default.
- W2606946441 hasConceptScore W2606946441C77928131 @default.
- W2606946441 hasLocation W26069464411 @default.
- W2606946441 hasOpenAccess W2606946441 @default.
- W2606946441 hasPrimaryLocation W26069464411 @default.
- W2606946441 hasRelatedWork W1647653128 @default.
- W2606946441 hasRelatedWork W2017292861 @default.
- W2606946441 hasRelatedWork W2081199393 @default.
- W2606946441 hasRelatedWork W2319608838 @default.
- W2606946441 hasRelatedWork W2333845405 @default.
- W2606946441 hasRelatedWork W2335539436 @default.
- W2606946441 hasRelatedWork W2617564648 @default.
- W2606946441 hasRelatedWork W2734622155 @default.
- W2606946441 hasRelatedWork W2799882752 @default.
- W2606946441 hasRelatedWork W2883625470 @default.
- W2606946441 hasRelatedWork W2891991296 @default.
- W2606946441 hasRelatedWork W2895694318 @default.
- W2606946441 hasRelatedWork W2917237942 @default.
- W2606946441 hasRelatedWork W2921176957 @default.
- W2606946441 hasRelatedWork W2969045360 @default.
- W2606946441 hasRelatedWork W3091851486 @default.
- W2606946441 hasRelatedWork W3092806023 @default.
- W2606946441 hasRelatedWork W3094347770 @default.
- W2606946441 hasRelatedWork W3169286083 @default.
- W2606946441 hasRelatedWork W3194647439 @default.
- W2606946441 isParatext "false" @default.
- W2606946441 isRetracted "false" @default.
- W2606946441 magId "2606946441" @default.
- W2606946441 workType "article" @default.