Matches in SemOpenAlex for { <https://semopenalex.org/work/W2607025551> ?p ?o ?g. }
- W2607025551 endingPage "78" @default.
- W2607025551 startingPage "66" @default.
- W2607025551 abstract "Filamentous green algae (FGA) may reach high biomass and play a very important functional role in productivity and nutrient cycling in the different water bodies. Their extracellular alkaline phosphatase activity may be an important player in the phosphorus cycle. Currently, there is intensive development of green algae in various freshwater and marine waterbodies, which creates problems for people's activities and necessitates its investigation. Filamentous green algae in four Chinese and Crimean (Russia) shallow freshwater ponds were in focus of this study. The dissolved phosphorus fraction in pond water, algal pigment level, activity and kinetic properties of alkaline phosphatase were evaluated in water column and cell membrane of filamentous green algae. Microalgal taxa were identified in the plankton samples. Species composition and density of FGA in the studied ponds were different. Two ponds had more than 50 % coverage of a water surface by FGA and its wet biomass more than 100 g∙m-2. Two others were with wet biomass less than 2 g∙m-2. In ponds with low FGA biomass, the soluble reactive phosphorus concentration exhibited considerably low level with less than 10 µg∙L-1, and the dissolved organic phosphorus comprised the largest phosphorus fraction, averaging 23.1 µg∙L-1 and ranged from 20.8 to 25.4 µg∙L-1. However, in ponds with high FGA biomass, particulate phosphorus was the major component, which contributes 45.8 % and 56.7 % of total phosphorus, respectively. Size fractionation of extracellular alkaline phosphatase activity in water column expressed spatial heterogeneity, which corresponded with biomass of FGA. The response of extracellular alkaline phosphatase activity to different phosphate concentration in water column was completely distinct from that in the cell membrane of FGA, the last of which represented the significantly inhibition effect to high phosphate concentration. The significant inhibition of alkaline phosphatase activity in cell membrane of FGA by phosphate in water may validate that FGA growth was limited by phosphorus. The contradiction between a low concentration of soluble reactive phosphorus and high FGA biomass may indicate that there was high speed nutrient cycling, probably, due to the alkaline phosphatase activity. Excreting exo-alkaline phosphatases, FGA, microalgae and bacteria accelerate phosphorus cycling through different mechanisms, and this may increase their development. In ponds with high FGA biomass, many of bacteria are responsible for regeneration of nutrients, which then consuming by FGA. Those bacteria also may concurrently restrict a microalgae development, such as unicellular Chlorophyta species. As an example, Cladophora provides habitat for different species of epibionts (bacteria and microalgae, primarily diatoms), and sustains of strong mutualistic alga-bacterium interactions. Therefore, the problem of excessive FGA growth should not be considered in isolation, but in a whole-ecosystem context." @default.
- W2607025551 created "2017-04-28" @default.
- W2607025551 creator A5019120874 @default.
- W2607025551 creator A5066606701 @default.
- W2607025551 creator A5070185634 @default.
- W2607025551 creator A5090880497 @default.
- W2607025551 date "2017-03-31" @default.
- W2607025551 modified "2023-09-26" @default.
- W2607025551 title "Filamentous green algae, extracellular alkaline phosphatases and some features of the phosphorus cycle in ponds" @default.
- W2607025551 cites W1603172811 @default.
- W2607025551 cites W1963519948 @default.
- W2607025551 cites W1964595334 @default.
- W2607025551 cites W1971669415 @default.
- W2607025551 cites W1995981884 @default.
- W2607025551 cites W2005057779 @default.
- W2607025551 cites W2006732583 @default.
- W2607025551 cites W2007722830 @default.
- W2607025551 cites W2010866582 @default.
- W2607025551 cites W2018837757 @default.
- W2607025551 cites W2023961352 @default.
- W2607025551 cites W2038428584 @default.
- W2607025551 cites W2039308392 @default.
- W2607025551 cites W2048683714 @default.
- W2607025551 cites W2051480271 @default.
- W2607025551 cites W2059053609 @default.
- W2607025551 cites W2061519805 @default.
- W2607025551 cites W2072700814 @default.
- W2607025551 cites W2075435443 @default.
- W2607025551 cites W2079440893 @default.
- W2607025551 cites W2082917714 @default.
- W2607025551 cites W2085596717 @default.
- W2607025551 cites W2095814125 @default.
- W2607025551 cites W2096086077 @default.
- W2607025551 cites W2100716265 @default.
- W2607025551 cites W2119707060 @default.
- W2607025551 cites W2124951299 @default.
- W2607025551 cites W2130899558 @default.
- W2607025551 cites W2139645710 @default.
- W2607025551 cites W2168075212 @default.
- W2607025551 cites W2230300109 @default.
- W2607025551 cites W2402885289 @default.
- W2607025551 cites W2409999248 @default.
- W2607025551 cites W2465094596 @default.
- W2607025551 cites W2772678047 @default.
- W2607025551 cites W5077141 @default.
- W2607025551 doi "https://doi.org/10.21072/mbj.2017.02.1.07" @default.
- W2607025551 hasPublicationYear "2017" @default.
- W2607025551 type Work @default.
- W2607025551 sameAs 2607025551 @default.
- W2607025551 citedByCount "3" @default.
- W2607025551 countsByYear W26070255512018 @default.
- W2607025551 countsByYear W26070255512020 @default.
- W2607025551 countsByYear W26070255512021 @default.
- W2607025551 crossrefType "journal-article" @default.
- W2607025551 hasAuthorship W2607025551A5019120874 @default.
- W2607025551 hasAuthorship W2607025551A5066606701 @default.
- W2607025551 hasAuthorship W2607025551A5070185634 @default.
- W2607025551 hasAuthorship W2607025551A5090880497 @default.
- W2607025551 hasBestOaLocation W26070255511 @default.
- W2607025551 hasConcept C107872376 @default.
- W2607025551 hasConcept C115540264 @default.
- W2607025551 hasConcept C122846477 @default.
- W2607025551 hasConcept C142796444 @default.
- W2607025551 hasConcept C160160445 @default.
- W2607025551 hasConcept C178790620 @default.
- W2607025551 hasConcept C181199279 @default.
- W2607025551 hasConcept C185592680 @default.
- W2607025551 hasConcept C18903297 @default.
- W2607025551 hasConcept C2780838361 @default.
- W2607025551 hasConcept C510538283 @default.
- W2607025551 hasConcept C55493867 @default.
- W2607025551 hasConcept C559758991 @default.
- W2607025551 hasConcept C59822182 @default.
- W2607025551 hasConcept C86803240 @default.
- W2607025551 hasConcept C97428945 @default.
- W2607025551 hasConceptScore W2607025551C107872376 @default.
- W2607025551 hasConceptScore W2607025551C115540264 @default.
- W2607025551 hasConceptScore W2607025551C122846477 @default.
- W2607025551 hasConceptScore W2607025551C142796444 @default.
- W2607025551 hasConceptScore W2607025551C160160445 @default.
- W2607025551 hasConceptScore W2607025551C178790620 @default.
- W2607025551 hasConceptScore W2607025551C181199279 @default.
- W2607025551 hasConceptScore W2607025551C185592680 @default.
- W2607025551 hasConceptScore W2607025551C18903297 @default.
- W2607025551 hasConceptScore W2607025551C2780838361 @default.
- W2607025551 hasConceptScore W2607025551C510538283 @default.
- W2607025551 hasConceptScore W2607025551C55493867 @default.
- W2607025551 hasConceptScore W2607025551C559758991 @default.
- W2607025551 hasConceptScore W2607025551C59822182 @default.
- W2607025551 hasConceptScore W2607025551C86803240 @default.
- W2607025551 hasConceptScore W2607025551C97428945 @default.
- W2607025551 hasIssue "1" @default.
- W2607025551 hasLocation W26070255511 @default.
- W2607025551 hasLocation W26070255512 @default.
- W2607025551 hasOpenAccess W2607025551 @default.
- W2607025551 hasPrimaryLocation W26070255511 @default.
- W2607025551 hasRelatedWork W2009447367 @default.
- W2607025551 hasRelatedWork W2009932473 @default.