Matches in SemOpenAlex for { <https://semopenalex.org/work/W2607127866> ?p ?o ?g. }
- W2607127866 endingPage "76" @default.
- W2607127866 startingPage "66" @default.
- W2607127866 abstract "Tuberculosis (TB) an infectious disease and remains a major cause of death globally. The World Health Organization (WHO) estimates that there were 10.4 million new TB cases worldwide in 2015. The majority of the infected populations come from resource-poor and marginalized communities with poor healthcare infrastructure. It is critical to reduce TB diagnosis delay in mitigating disease transmission and minimizing the reproductive rate of the tuberculosis epidemic. To combine machine learning and mobile computing techniques may help to accelerate the TB diagnosis among these communities. The goal of our research is to reduce TB patient wait times for being diagnosed by developing new machine learning techniques and mobile health technologies. In this paper, major technique barriers and proposed system architecture are first introduced. Then two major progresses are reported: (1) To develop an X-ray image database and annotation software dedicated for automated TB screening. The annotation software can help to highlight the TB manifestations, which are very useful for machine learning algorithms; (2) To develop effective and efficient computational models to classify the image into different category of TB manifestations. The model we proposed is a deep convolutional neural networks (CNN)-based models. We have conducted substantial experiments and the results have demonstrated that our approach is promising. We envision our future work includes two research activities. First, we plan to improve the performance of the algorithms with deeper neural networks. Second, we plan to implement our algorithms on mobile device and deploy our system in the city of Carabayllo, a high-burden TB area in Lima, the capital of Perú." @default.
- W2607127866 created "2017-04-28" @default.
- W2607127866 creator A5013314644 @default.
- W2607127866 creator A5022256556 @default.
- W2607127866 creator A5035183083 @default.
- W2607127866 creator A5052742776 @default.
- W2607127866 creator A5054418515 @default.
- W2607127866 creator A5055939635 @default.
- W2607127866 creator A5057999830 @default.
- W2607127866 creator A5058469901 @default.
- W2607127866 creator A5060002817 @default.
- W2607127866 creator A5062148769 @default.
- W2607127866 creator A5064656289 @default.
- W2607127866 creator A5074776554 @default.
- W2607127866 creator A5075692165 @default.
- W2607127866 creator A5077348938 @default.
- W2607127866 creator A5088574399 @default.
- W2607127866 date "2017-06-01" @default.
- W2607127866 modified "2023-10-14" @default.
- W2607127866 title "Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor communities in Perú" @default.
- W2607127866 cites W2015479561 @default.
- W2607127866 cites W2024082504 @default.
- W2607127866 cites W2025768430 @default.
- W2607127866 cites W2042680533 @default.
- W2607127866 cites W2046297223 @default.
- W2607127866 cites W2059862641 @default.
- W2607127866 cites W2063453644 @default.
- W2607127866 cites W2088049833 @default.
- W2607127866 cites W2094056275 @default.
- W2607127866 cites W2097117768 @default.
- W2607127866 cites W2099866409 @default.
- W2607127866 cites W2100495367 @default.
- W2607127866 cites W2102605133 @default.
- W2607127866 cites W2105982574 @default.
- W2607127866 cites W2108598243 @default.
- W2607127866 cites W2110764733 @default.
- W2607127866 cites W2122901409 @default.
- W2607127866 cites W2127334464 @default.
- W2607127866 cites W2127830198 @default.
- W2607127866 cites W2128886090 @default.
- W2607127866 cites W2133533561 @default.
- W2607127866 cites W2137460360 @default.
- W2607127866 cites W2142453887 @default.
- W2607127866 cites W2151103935 @default.
- W2607127866 cites W2154683974 @default.
- W2607127866 cites W2155893237 @default.
- W2607127866 cites W2157597800 @default.
- W2607127866 cites W2158356465 @default.
- W2607127866 cites W2163352848 @default.
- W2607127866 cites W2164160732 @default.
- W2607127866 cites W2164568500 @default.
- W2607127866 cites W2164703398 @default.
- W2607127866 cites W2313973410 @default.
- W2607127866 cites W2321634862 @default.
- W2607127866 cites W4231109964 @default.
- W2607127866 cites W4239510810 @default.
- W2607127866 cites W2050995869 @default.
- W2607127866 doi "https://doi.org/10.1016/j.smhl.2017.04.003" @default.
- W2607127866 hasPublicationYear "2017" @default.
- W2607127866 type Work @default.
- W2607127866 sameAs 2607127866 @default.
- W2607127866 citedByCount "32" @default.
- W2607127866 countsByYear W26071278662017 @default.
- W2607127866 countsByYear W26071278662019 @default.
- W2607127866 countsByYear W26071278662020 @default.
- W2607127866 countsByYear W26071278662021 @default.
- W2607127866 countsByYear W26071278662022 @default.
- W2607127866 countsByYear W26071278662023 @default.
- W2607127866 crossrefType "journal-article" @default.
- W2607127866 hasAuthorship W2607127866A5013314644 @default.
- W2607127866 hasAuthorship W2607127866A5022256556 @default.
- W2607127866 hasAuthorship W2607127866A5035183083 @default.
- W2607127866 hasAuthorship W2607127866A5052742776 @default.
- W2607127866 hasAuthorship W2607127866A5054418515 @default.
- W2607127866 hasAuthorship W2607127866A5055939635 @default.
- W2607127866 hasAuthorship W2607127866A5057999830 @default.
- W2607127866 hasAuthorship W2607127866A5058469901 @default.
- W2607127866 hasAuthorship W2607127866A5060002817 @default.
- W2607127866 hasAuthorship W2607127866A5062148769 @default.
- W2607127866 hasAuthorship W2607127866A5064656289 @default.
- W2607127866 hasAuthorship W2607127866A5074776554 @default.
- W2607127866 hasAuthorship W2607127866A5075692165 @default.
- W2607127866 hasAuthorship W2607127866A5077348938 @default.
- W2607127866 hasAuthorship W2607127866A5088574399 @default.
- W2607127866 hasBestOaLocation W26071278661 @default.
- W2607127866 hasConcept C108583219 @default.
- W2607127866 hasConcept C119857082 @default.
- W2607127866 hasConcept C142724271 @default.
- W2607127866 hasConcept C154945302 @default.
- W2607127866 hasConcept C199360897 @default.
- W2607127866 hasConcept C206345919 @default.
- W2607127866 hasConcept C2522767166 @default.
- W2607127866 hasConcept C2777904410 @default.
- W2607127866 hasConcept C2781069245 @default.
- W2607127866 hasConcept C31258907 @default.
- W2607127866 hasConcept C41008148 @default.
- W2607127866 hasConcept C71924100 @default.
- W2607127866 hasConcept C81363708 @default.