Matches in SemOpenAlex for { <https://semopenalex.org/work/W2607164790> ?p ?o ?g. }
- W2607164790 endingPage "41" @default.
- W2607164790 startingPage "28" @default.
- W2607164790 abstract "Abstract Advanced numerical models used to predict coastal change at a variety of time and spatial scales often contain many free parameters that require calibration to the available field data. At present, little guidance (beyond the adoption of the default values provided) is available in the field of coastal engineering to inform the selection of best-fit parameter values. Common calibration techniques can often lack a rigorous quantification of model sensitivity to parameters and parameter-induced model uncertainty. Here we employ the Generalised Likelihood Uncertainty Estimation (GLUE) method to address these issues. The GLUE method uses Monte Carlo sampling to assess the skill of many different combinations of model parameters when compared to observational data. As a rigorous modelling framework, the GLUE method provides a series of standard tools that assist the modeller to analyse model sensitivity, undertake parameter optimisation and quantify parameter-induced uncertainty. In addition, new tools are presented here to identify where unique calibrated parameter sets are required for different observational data (e.g., should the calibrated parameter set differ between alongshore locations at a site) and investigate the convergence of GLUE estimated optimum parameter values over increasing numbers of Monte Carlo samples. As the methodology and philosophy of GLUE is well established in other fields, this paper presents a practical case study to explore the strengths and weaknesses of the method when applied to a relatively complex coastal numerical model (XBeach). The results obtained are compared to a previously reported and more ‘standard’ model calibration undertaken within the context of a coastal storm early warning system. While the GLUE method requires orders of magnitude more computational power, it is shown that its use in place of the more common one-at-a-time ‘trial-and-error’ approach to model calibration, provides: a significant improvement in predictive skill; a more rigorous evaluation of the model sensitivity to parameters; the ability to identify distinct differences in the XBeach model performance dependent on dune impact processes; and additional analysis including the quantification of parameter-induced uncertainty." @default.
- W2607164790 created "2017-04-28" @default.
- W2607164790 creator A5003321138 @default.
- W2607164790 creator A5053383515 @default.
- W2607164790 creator A5065701966 @default.
- W2607164790 creator A5067839106 @default.
- W2607164790 creator A5076110214 @default.
- W2607164790 creator A5081452912 @default.
- W2607164790 date "2017-07-01" @default.
- W2607164790 modified "2023-09-29" @default.
- W2607164790 title "Calibrating and assessing uncertainty in coastal numerical models" @default.
- W2607164790 cites W116780636 @default.
- W2607164790 cites W1541190072 @default.
- W2607164790 cites W1919296332 @default.
- W2607164790 cites W1964470512 @default.
- W2607164790 cites W1967012557 @default.
- W2607164790 cites W1971179885 @default.
- W2607164790 cites W1979152763 @default.
- W2607164790 cites W1986759396 @default.
- W2607164790 cites W1987017697 @default.
- W2607164790 cites W1990883340 @default.
- W2607164790 cites W1991921673 @default.
- W2607164790 cites W1999484929 @default.
- W2607164790 cites W2008237601 @default.
- W2607164790 cites W2010754286 @default.
- W2607164790 cites W2019519341 @default.
- W2607164790 cites W2022540520 @default.
- W2607164790 cites W2029302045 @default.
- W2607164790 cites W2029777332 @default.
- W2607164790 cites W2030041202 @default.
- W2607164790 cites W2031541356 @default.
- W2607164790 cites W2032412963 @default.
- W2607164790 cites W2037809284 @default.
- W2607164790 cites W2039827162 @default.
- W2607164790 cites W2041086299 @default.
- W2607164790 cites W2050686264 @default.
- W2607164790 cites W2063187353 @default.
- W2607164790 cites W2065193487 @default.
- W2607164790 cites W2068771513 @default.
- W2607164790 cites W2075965726 @default.
- W2607164790 cites W2079668044 @default.
- W2607164790 cites W2081346522 @default.
- W2607164790 cites W2087170724 @default.
- W2607164790 cites W2087719296 @default.
- W2607164790 cites W2104571002 @default.
- W2607164790 cites W2106393061 @default.
- W2607164790 cites W2115345337 @default.
- W2607164790 cites W2124738823 @default.
- W2607164790 cites W2126658193 @default.
- W2607164790 cites W2131528102 @default.
- W2607164790 cites W2155633525 @default.
- W2607164790 cites W2156071316 @default.
- W2607164790 cites W2159498939 @default.
- W2607164790 cites W2163105760 @default.
- W2607164790 cites W2163266542 @default.
- W2607164790 cites W2164808425 @default.
- W2607164790 cites W2178155666 @default.
- W2607164790 cites W2267089187 @default.
- W2607164790 cites W2429901481 @default.
- W2607164790 cites W2467095513 @default.
- W2607164790 cites W2520583019 @default.
- W2607164790 cites W4236619250 @default.
- W2607164790 cites W603140171 @default.
- W2607164790 cites W999207820 @default.
- W2607164790 doi "https://doi.org/10.1016/j.coastaleng.2017.04.005" @default.
- W2607164790 hasPublicationYear "2017" @default.
- W2607164790 type Work @default.
- W2607164790 sameAs 2607164790 @default.
- W2607164790 citedByCount "40" @default.
- W2607164790 countsByYear W26071647902017 @default.
- W2607164790 countsByYear W26071647902018 @default.
- W2607164790 countsByYear W26071647902019 @default.
- W2607164790 countsByYear W26071647902020 @default.
- W2607164790 countsByYear W26071647902021 @default.
- W2607164790 countsByYear W26071647902022 @default.
- W2607164790 countsByYear W26071647902023 @default.
- W2607164790 crossrefType "journal-article" @default.
- W2607164790 hasAuthorship W2607164790A5003321138 @default.
- W2607164790 hasAuthorship W2607164790A5053383515 @default.
- W2607164790 hasAuthorship W2607164790A5065701966 @default.
- W2607164790 hasAuthorship W2607164790A5067839106 @default.
- W2607164790 hasAuthorship W2607164790A5076110214 @default.
- W2607164790 hasAuthorship W2607164790A5081452912 @default.
- W2607164790 hasConcept C119857082 @default.
- W2607164790 hasConcept C127313418 @default.
- W2607164790 hasConcept C2986605239 @default.
- W2607164790 hasConcept C2989031253 @default.
- W2607164790 hasConcept C32230216 @default.
- W2607164790 hasConcept C39432304 @default.
- W2607164790 hasConcept C41008148 @default.
- W2607164790 hasConcept C8058405 @default.
- W2607164790 hasConceptScore W2607164790C119857082 @default.
- W2607164790 hasConceptScore W2607164790C127313418 @default.
- W2607164790 hasConceptScore W2607164790C2986605239 @default.
- W2607164790 hasConceptScore W2607164790C2989031253 @default.
- W2607164790 hasConceptScore W2607164790C32230216 @default.
- W2607164790 hasConceptScore W2607164790C39432304 @default.
- W2607164790 hasConceptScore W2607164790C41008148 @default.