Matches in SemOpenAlex for { <https://semopenalex.org/work/W2607245364> ?p ?o ?g. }
- W2607245364 endingPage "29" @default.
- W2607245364 startingPage "13" @default.
- W2607245364 abstract "Satellite remote sensing data can provide timely, accurate, and objective information on cultivated area by crop type and, in turn, facilitate accurate estimates of crop production. Here, we present a generic multi-resolution approach to sample-based crop type area estimation at the national level using soybean as an example crop type. Historical MODIS (MODerate resolution Imaging Spectroradiometer) data were used to stratify growing regions into subsets of low, medium and high soybean cover. A stratified random sample of 20 km × 20 km sample blocks was selected and Landsat data for these sample blocks classified into soybean cover. The Landsat-derived soybean area was used to produce national estimates of soybean area. Current year MODIS-indicated soybean cover served as an auxiliary variable in a stratified regression estimator procedure. To evaluate the approach, we prototyped the method in the USA, where the 2013 USDA Cropland Data Layer (CDL) was used as a reference training data set for mapping soybean cover within each sample block. Three individual Landsat images were sufficient to accurately map soybean cover for all blocks, revealing that a rather sparse sample of phenological variation is needed to separate soybean from other cover types. In addition to stacks of images, we also evaluated standard radiometrically normalized Landsat inputs for mapping blocks individually (local-scale) and all at once (national-scale). All tested inputs resulted in area estimates comparable to the official USDA estimate of 30.86 Mha, with lower accuracy and higher standard error for national-scale mapping implementations. The stratified regression estimator incorporating current year MODIS-indicated soy reduced the standard error of the estimated soybean area by over 25% relative to the standard error of the stratified estimator. Finally, the method was ported to Argentina. A stratified random sample of blocks was characterized for soybean cultivated area using stacks of individual Landsat images for the 2013–2014 southern hemisphere growing season. A sub-sample of these blocks was visited on the ground to assess the accuracy of the Landsat-derived soy classification. The stratified regression estimator procedure performed similarly to the US application as it resulted in a reduction in standard error of about 25% relative to the stratified estimator not incorporating current year MODIS-indicated soybean. Our final estimated soybean area was 28% lower than that reported by the USDA, corresponding to a 20% field-based omission error related to underdeveloped fields. Lessons learned from this study can be ported to other regions of comparable field size and management intensity to assess soybean cultivated area. Results for the USA and Argentina may be viewed and downloaded at http://glad.geog.umd.edu/us-analysis and http://glad.geog.umd.edu/argentina-analysis, respectively." @default.
- W2607245364 created "2017-04-28" @default.
- W2607245364 creator A5006996458 @default.
- W2607245364 creator A5015092269 @default.
- W2607245364 creator A5015434851 @default.
- W2607245364 creator A5025223109 @default.
- W2607245364 creator A5026647800 @default.
- W2607245364 creator A5028557559 @default.
- W2607245364 creator A5040105803 @default.
- W2607245364 creator A5065774182 @default.
- W2607245364 creator A5074759135 @default.
- W2607245364 creator A5077318052 @default.
- W2607245364 date "2017-06-01" @default.
- W2607245364 modified "2023-10-15" @default.
- W2607245364 title "A multi-resolution approach to national-scale cultivated area estimation of soybean" @default.
- W2607245364 cites W1969834758 @default.
- W2607245364 cites W1971683018 @default.
- W2607245364 cites W1973994611 @default.
- W2607245364 cites W1974047452 @default.
- W2607245364 cites W1976129996 @default.
- W2607245364 cites W1993585210 @default.
- W2607245364 cites W1998281138 @default.
- W2607245364 cites W1999110225 @default.
- W2607245364 cites W1999281047 @default.
- W2607245364 cites W2004611847 @default.
- W2607245364 cites W2008085934 @default.
- W2607245364 cites W2012178580 @default.
- W2607245364 cites W2022204818 @default.
- W2607245364 cites W2030165874 @default.
- W2607245364 cites W2031340414 @default.
- W2607245364 cites W2038818831 @default.
- W2607245364 cites W2039604265 @default.
- W2607245364 cites W2055248879 @default.
- W2607245364 cites W2060745228 @default.
- W2607245364 cites W2062321700 @default.
- W2607245364 cites W2072465375 @default.
- W2607245364 cites W2095807456 @default.
- W2607245364 cites W2098962449 @default.
- W2607245364 cites W2108493207 @default.
- W2607245364 cites W2116973452 @default.
- W2607245364 cites W2117706739 @default.
- W2607245364 cites W2125598516 @default.
- W2607245364 cites W2125758830 @default.
- W2607245364 cites W2138408852 @default.
- W2607245364 cites W2145327161 @default.
- W2607245364 cites W2158883283 @default.
- W2607245364 cites W2188083314 @default.
- W2607245364 cites W2288373547 @default.
- W2607245364 cites W2315702301 @default.
- W2607245364 cites W4212883601 @default.
- W2607245364 doi "https://doi.org/10.1016/j.rse.2017.03.047" @default.
- W2607245364 hasPublicationYear "2017" @default.
- W2607245364 type Work @default.
- W2607245364 sameAs 2607245364 @default.
- W2607245364 citedByCount "54" @default.
- W2607245364 countsByYear W26072453642018 @default.
- W2607245364 countsByYear W26072453642019 @default.
- W2607245364 countsByYear W26072453642020 @default.
- W2607245364 countsByYear W26072453642021 @default.
- W2607245364 countsByYear W26072453642022 @default.
- W2607245364 countsByYear W26072453642023 @default.
- W2607245364 crossrefType "journal-article" @default.
- W2607245364 hasAuthorship W2607245364A5006996458 @default.
- W2607245364 hasAuthorship W2607245364A5015092269 @default.
- W2607245364 hasAuthorship W2607245364A5015434851 @default.
- W2607245364 hasAuthorship W2607245364A5025223109 @default.
- W2607245364 hasAuthorship W2607245364A5026647800 @default.
- W2607245364 hasAuthorship W2607245364A5028557559 @default.
- W2607245364 hasAuthorship W2607245364A5040105803 @default.
- W2607245364 hasAuthorship W2607245364A5065774182 @default.
- W2607245364 hasAuthorship W2607245364A5074759135 @default.
- W2607245364 hasAuthorship W2607245364A5077318052 @default.
- W2607245364 hasConcept C105795698 @default.
- W2607245364 hasConcept C127413603 @default.
- W2607245364 hasConcept C146978453 @default.
- W2607245364 hasConcept C185429906 @default.
- W2607245364 hasConcept C185592680 @default.
- W2607245364 hasConcept C19269812 @default.
- W2607245364 hasConcept C198531522 @default.
- W2607245364 hasConcept C205649164 @default.
- W2607245364 hasConcept C2777007095 @default.
- W2607245364 hasConcept C2778755073 @default.
- W2607245364 hasConcept C33923547 @default.
- W2607245364 hasConcept C39432304 @default.
- W2607245364 hasConcept C43617362 @default.
- W2607245364 hasConcept C58640448 @default.
- W2607245364 hasConcept C62649853 @default.
- W2607245364 hasConceptScore W2607245364C105795698 @default.
- W2607245364 hasConceptScore W2607245364C127413603 @default.
- W2607245364 hasConceptScore W2607245364C146978453 @default.
- W2607245364 hasConceptScore W2607245364C185429906 @default.
- W2607245364 hasConceptScore W2607245364C185592680 @default.
- W2607245364 hasConceptScore W2607245364C19269812 @default.
- W2607245364 hasConceptScore W2607245364C198531522 @default.
- W2607245364 hasConceptScore W2607245364C205649164 @default.
- W2607245364 hasConceptScore W2607245364C2777007095 @default.
- W2607245364 hasConceptScore W2607245364C2778755073 @default.
- W2607245364 hasConceptScore W2607245364C33923547 @default.