Matches in SemOpenAlex for { <https://semopenalex.org/work/W2607267352> ?p ?o ?g. }
- W2607267352 abstract "The challenges of modeling students’ performance in simulation-based assessments include accounting for multiple aspects of knowledge and skill that arise in different situations and the conditional dependencies among multiple aspects of performance in a complex assessment. This paper describes a Bayesian approach to modeling and estimating cognitive models in such situations, in terms of both statistical machinery and actual instrument development. The method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines these estimates using Markov chain Monte Carlo (MCMC) procedures. This process is illustrated in the context of NetPASS, a complex simulation-based assessment in the domain of computer networking. We describe a parameterization of the relationships in NetPASS via an ordered polytomous item response model and detail the updating of the model with observed data via Bayesian statistical procedures ultimately being provided by Markov chain Monte Carlo estimation. Specifying and Refining a Complex Measurement Model Instruments in educational measurement have taken on a variety of forms ranging from the more familiar( e.g., multiple-choice formats) to the unique (e.g., computer simulation of a real-world application). Different formats yield different work products, for example, a scantron sheet with circles filled in, essays to be scored by raters, and portfolios. Though methods for drawing inferences from examinees’ work products to their knowledge, skills, and abilities exist for the more popular assessment instruments, new and innovative assessment instruments are often left needing inferential procedures to be developed individually. Nonstandard and complex tasks result in complex work products, and different combinations of knowledge and skill may be tapped in different tasks or subtasks. Drawing proper inferences in these situations requires models that accumulate and incorporate 1 We wish to thank David Williamson, Malcolm Bauer, Russell Almond, Duanli Yan, and Margaret Redman of Educational Testing Service and John Behrens and Sarah Demark of Cisco Learning Institute for their involvement with, and their support of our participation in, the NetPASS project." @default.
- W2607267352 created "2017-04-28" @default.
- W2607267352 creator A5028943908 @default.
- W2607267352 creator A5032528340 @default.
- W2607267352 date "2004-01-01" @default.
- W2607267352 modified "2023-09-25" @default.
- W2607267352 title "Specifying and refining a measurement model for a simulation-based assessment" @default.
- W2607267352 cites W1588286827 @default.
- W2607267352 cites W1755360231 @default.
- W2607267352 cites W1966187926 @default.
- W2607267352 cites W2000619651 @default.
- W2607267352 cites W2033960343 @default.
- W2607267352 cites W2039681496 @default.
- W2607267352 cites W2042122853 @default.
- W2607267352 cites W2043458675 @default.
- W2607267352 cites W2045656233 @default.
- W2607267352 cites W2056760934 @default.
- W2607267352 cites W2057765075 @default.
- W2607267352 cites W2060136436 @default.
- W2607267352 cites W2069469807 @default.
- W2607267352 cites W2073124272 @default.
- W2607267352 cites W2076092328 @default.
- W2607267352 cites W2078852258 @default.
- W2607267352 cites W2088292263 @default.
- W2607267352 cites W2093223772 @default.
- W2607267352 cites W2093884338 @default.
- W2607267352 cites W2130416410 @default.
- W2607267352 cites W2148534890 @default.
- W2607267352 cites W2152898342 @default.
- W2607267352 cites W2159080219 @default.
- W2607267352 cites W2171265988 @default.
- W2607267352 cites W3005137936 @default.
- W2607267352 cites W304493489 @default.
- W2607267352 cites W568024311 @default.
- W2607267352 cites W74953171 @default.
- W2607267352 cites W76353074 @default.
- W2607267352 hasPublicationYear "2004" @default.
- W2607267352 type Work @default.
- W2607267352 sameAs 2607267352 @default.
- W2607267352 citedByCount "3" @default.
- W2607267352 countsByYear W26072673522012 @default.
- W2607267352 crossrefType "journal-article" @default.
- W2607267352 hasAuthorship W2607267352A5028943908 @default.
- W2607267352 hasAuthorship W2607267352A5032528340 @default.
- W2607267352 hasConcept C105795698 @default.
- W2607267352 hasConcept C107673813 @default.
- W2607267352 hasConcept C111350023 @default.
- W2607267352 hasConcept C111919701 @default.
- W2607267352 hasConcept C114289077 @default.
- W2607267352 hasConcept C119857082 @default.
- W2607267352 hasConcept C124101348 @default.
- W2607267352 hasConcept C134306372 @default.
- W2607267352 hasConcept C136197465 @default.
- W2607267352 hasConcept C151730666 @default.
- W2607267352 hasConcept C154945302 @default.
- W2607267352 hasConcept C171606756 @default.
- W2607267352 hasConcept C182365436 @default.
- W2607267352 hasConcept C19875794 @default.
- W2607267352 hasConcept C207968926 @default.
- W2607267352 hasConcept C2779343474 @default.
- W2607267352 hasConcept C33923547 @default.
- W2607267352 hasConcept C41008148 @default.
- W2607267352 hasConcept C49937458 @default.
- W2607267352 hasConcept C51167844 @default.
- W2607267352 hasConcept C86803240 @default.
- W2607267352 hasConcept C98045186 @default.
- W2607267352 hasConcept C98763669 @default.
- W2607267352 hasConceptScore W2607267352C105795698 @default.
- W2607267352 hasConceptScore W2607267352C107673813 @default.
- W2607267352 hasConceptScore W2607267352C111350023 @default.
- W2607267352 hasConceptScore W2607267352C111919701 @default.
- W2607267352 hasConceptScore W2607267352C114289077 @default.
- W2607267352 hasConceptScore W2607267352C119857082 @default.
- W2607267352 hasConceptScore W2607267352C124101348 @default.
- W2607267352 hasConceptScore W2607267352C134306372 @default.
- W2607267352 hasConceptScore W2607267352C136197465 @default.
- W2607267352 hasConceptScore W2607267352C151730666 @default.
- W2607267352 hasConceptScore W2607267352C154945302 @default.
- W2607267352 hasConceptScore W2607267352C171606756 @default.
- W2607267352 hasConceptScore W2607267352C182365436 @default.
- W2607267352 hasConceptScore W2607267352C19875794 @default.
- W2607267352 hasConceptScore W2607267352C207968926 @default.
- W2607267352 hasConceptScore W2607267352C2779343474 @default.
- W2607267352 hasConceptScore W2607267352C33923547 @default.
- W2607267352 hasConceptScore W2607267352C41008148 @default.
- W2607267352 hasConceptScore W2607267352C49937458 @default.
- W2607267352 hasConceptScore W2607267352C51167844 @default.
- W2607267352 hasConceptScore W2607267352C86803240 @default.
- W2607267352 hasConceptScore W2607267352C98045186 @default.
- W2607267352 hasConceptScore W2607267352C98763669 @default.
- W2607267352 hasLocation W26072673521 @default.
- W2607267352 hasOpenAccess W2607267352 @default.
- W2607267352 hasPrimaryLocation W26072673521 @default.
- W2607267352 hasRelatedWork W1267566789 @default.
- W2607267352 hasRelatedWork W1579303078 @default.
- W2607267352 hasRelatedWork W1967239989 @default.
- W2607267352 hasRelatedWork W2039681496 @default.
- W2607267352 hasRelatedWork W2489352641 @default.
- W2607267352 hasRelatedWork W2569259520 @default.
- W2607267352 hasRelatedWork W2586896516 @default.