Matches in SemOpenAlex for { <https://semopenalex.org/work/W2607432848> ?p ?o ?g. }
- W2607432848 endingPage "24" @default.
- W2607432848 startingPage "10" @default.
- W2607432848 abstract "One of the biggest problems in automated diagnosis of psychiatric disorders from medical images is the lack of sufficiently large samples for training. Sample size is especially important in the case of highly heterogeneous disorders such as schizophrenia, where machine learning models built on relatively low numbers of subjects may suffer from poor generalizability. Via multicenter studies and consortium initiatives researchers have tried to solve this problem by combining data sets from multiple sites. The necessary sharing of (raw) data is, however, often hindered by legal and ethical issues. Moreover, in the case of very large samples, the computational complexity might become too large. The solution to this problem could be distributed learning. In this paper we investigated the possibility to create a meta-model by combining support vector machines (SVM) classifiers trained on the local datasets, without the need for sharing medical images or any other personal data. Validation was done in a 4-center setup comprising of 480 first-episode schizophrenia patients and healthy controls in total. We built SVM models to separate patients from controls based on three different kinds of imaging features derived from structural MRI scans, and compared models built on the joint multicenter data to the meta-models. The results showed that the combined meta-model had high similarity to the model built on all data pooled together and comparable classification performance on all three imaging features. Both similarity and performance was superior to that of the local models. We conclude that combining models is thus a viable alternative that facilitates data sharing and creating bigger and more informative models." @default.
- W2607432848 created "2017-04-28" @default.
- W2607432848 creator A5004481364 @default.
- W2607432848 creator A5010551902 @default.
- W2607432848 creator A5012893465 @default.
- W2607432848 creator A5021432986 @default.
- W2607432848 creator A5024196894 @default.
- W2607432848 creator A5030421132 @default.
- W2607432848 creator A5031613969 @default.
- W2607432848 creator A5053975836 @default.
- W2607432848 creator A5062319888 @default.
- W2607432848 date "2017-07-01" @default.
- W2607432848 modified "2023-10-16" @default.
- W2607432848 title "Multi-center machine learning in imaging psychiatry: A meta-model approach" @default.
- W2607432848 cites W1512098439 @default.
- W2607432848 cites W1964469261 @default.
- W2607432848 cites W1965339644 @default.
- W2607432848 cites W1967046944 @default.
- W2607432848 cites W1967052544 @default.
- W2607432848 cites W1970520385 @default.
- W2607432848 cites W1973184605 @default.
- W2607432848 cites W1977186726 @default.
- W2607432848 cites W2004230500 @default.
- W2607432848 cites W2005957988 @default.
- W2607432848 cites W2011334778 @default.
- W2607432848 cites W2011402106 @default.
- W2607432848 cites W2012066625 @default.
- W2607432848 cites W2018851857 @default.
- W2607432848 cites W2021515139 @default.
- W2607432848 cites W2028402164 @default.
- W2607432848 cites W2028739995 @default.
- W2607432848 cites W2043564452 @default.
- W2607432848 cites W2044196444 @default.
- W2607432848 cites W2055683310 @default.
- W2607432848 cites W2059303514 @default.
- W2607432848 cites W2065056866 @default.
- W2607432848 cites W2069317808 @default.
- W2607432848 cites W2090775736 @default.
- W2607432848 cites W2093456323 @default.
- W2607432848 cites W2094919766 @default.
- W2607432848 cites W2098395209 @default.
- W2607432848 cites W2098924721 @default.
- W2607432848 cites W2102521965 @default.
- W2607432848 cites W2105527159 @default.
- W2607432848 cites W2129359809 @default.
- W2607432848 cites W2132782405 @default.
- W2607432848 cites W2134789197 @default.
- W2607432848 cites W2140606211 @default.
- W2607432848 cites W2146594014 @default.
- W2607432848 cites W2149298154 @default.
- W2607432848 cites W2155298532 @default.
- W2607432848 cites W2158766056 @default.
- W2607432848 cites W2159722604 @default.
- W2607432848 cites W2162126183 @default.
- W2607432848 cites W2162253495 @default.
- W2607432848 cites W2162950935 @default.
- W2607432848 cites W2165130903 @default.
- W2607432848 cites W2167917621 @default.
- W2607432848 cites W2206955164 @default.
- W2607432848 cites W2317474889 @default.
- W2607432848 cites W2322983841 @default.
- W2607432848 cites W2419550492 @default.
- W2607432848 cites W4211063728 @default.
- W2607432848 cites W4230920194 @default.
- W2607432848 doi "https://doi.org/10.1016/j.neuroimage.2017.03.027" @default.
- W2607432848 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28428048" @default.
- W2607432848 hasPublicationYear "2017" @default.
- W2607432848 type Work @default.
- W2607432848 sameAs 2607432848 @default.
- W2607432848 citedByCount "43" @default.
- W2607432848 countsByYear W26074328482016 @default.
- W2607432848 countsByYear W26074328482017 @default.
- W2607432848 countsByYear W26074328482018 @default.
- W2607432848 countsByYear W26074328482019 @default.
- W2607432848 countsByYear W26074328482020 @default.
- W2607432848 countsByYear W26074328482021 @default.
- W2607432848 countsByYear W26074328482022 @default.
- W2607432848 countsByYear W26074328482023 @default.
- W2607432848 crossrefType "journal-article" @default.
- W2607432848 hasAuthorship W2607432848A5004481364 @default.
- W2607432848 hasAuthorship W2607432848A5010551902 @default.
- W2607432848 hasAuthorship W2607432848A5012893465 @default.
- W2607432848 hasAuthorship W2607432848A5021432986 @default.
- W2607432848 hasAuthorship W2607432848A5024196894 @default.
- W2607432848 hasAuthorship W2607432848A5030421132 @default.
- W2607432848 hasAuthorship W2607432848A5031613969 @default.
- W2607432848 hasAuthorship W2607432848A5053975836 @default.
- W2607432848 hasAuthorship W2607432848A5062319888 @default.
- W2607432848 hasConcept C103278499 @default.
- W2607432848 hasConcept C105795698 @default.
- W2607432848 hasConcept C115961682 @default.
- W2607432848 hasConcept C119857082 @default.
- W2607432848 hasConcept C12267149 @default.
- W2607432848 hasConcept C124101348 @default.
- W2607432848 hasConcept C129848803 @default.
- W2607432848 hasConcept C132964779 @default.
- W2607432848 hasConcept C142724271 @default.
- W2607432848 hasConcept C154945302 @default.