Matches in SemOpenAlex for { <https://semopenalex.org/work/W2607780746> ?p ?o ?g. }
- W2607780746 abstract "Artificial Neural Networks have earned popularity in recent years because of their ability to approximate nonlinear functions. Training a neural network involves minimizing the mean square error between the target and network output. The error surface is nonconvex and highly multimodal. Finding the minimum of a multimodal function is a NP complete problem and cannot be solved completely. Thus application of heuristic global optimization algorithms that computes a good global minimum to neural network training is of interest. This paper reviews the various heuristic global optimization algorithms used for training feedforward neural networks and recurrent neural networks. The training algorithms are compared in terms of the learning rate, convergence speed and accuracy of the output produced by the neural network. The paper concludes by suggesting directions for novel ANN training algorithms based on recent advances in global optimization." @default.
- W2607780746 created "2017-05-05" @default.
- W2607780746 creator A5053271547 @default.
- W2607780746 creator A5062130068 @default.
- W2607780746 date "2017-03-01" @default.
- W2607780746 modified "2023-09-24" @default.
- W2607780746 title "A Review of Heuristic Global Optimization Based Artificial Neural Network Training Approahes" @default.
- W2607780746 cites W116137240 @default.
- W2607780746 cites W1176220669 @default.
- W2607780746 cites W165295313 @default.
- W2607780746 cites W1689766768 @default.
- W2607780746 cites W1839137930 @default.
- W2607780746 cites W1962752774 @default.
- W2607780746 cites W1971259134 @default.
- W2607780746 cites W1992499157 @default.
- W2607780746 cites W2022740958 @default.
- W2607780746 cites W2052309646 @default.
- W2607780746 cites W2074416932 @default.
- W2607780746 cites W2097551217 @default.
- W2607780746 cites W2106688677 @default.
- W2607780746 cites W2116400650 @default.
- W2607780746 cites W2117062976 @default.
- W2607780746 cites W2120194413 @default.
- W2607780746 cites W2120525651 @default.
- W2607780746 cites W2125213524 @default.
- W2607780746 cites W2133514789 @default.
- W2607780746 cites W2137699621 @default.
- W2607780746 cites W2138784882 @default.
- W2607780746 cites W2139854513 @default.
- W2607780746 cites W2149903656 @default.
- W2607780746 cites W2153060984 @default.
- W2607780746 cites W2154929945 @default.
- W2607780746 cites W2157080539 @default.
- W2607780746 cites W2350081509 @default.
- W2607780746 cites W2543580944 @default.
- W2607780746 cites W2547672639 @default.
- W2607780746 doi "https://doi.org/10.11591/ijai.v6.i1.pp26-32" @default.
- W2607780746 hasPublicationYear "2017" @default.
- W2607780746 type Work @default.
- W2607780746 sameAs 2607780746 @default.
- W2607780746 citedByCount "1" @default.
- W2607780746 countsByYear W26077807462020 @default.
- W2607780746 crossrefType "journal-article" @default.
- W2607780746 hasAuthorship W2607780746A5053271547 @default.
- W2607780746 hasAuthorship W2607780746A5062130068 @default.
- W2607780746 hasBestOaLocation W26077807461 @default.
- W2607780746 hasConcept C11413529 @default.
- W2607780746 hasConcept C119857082 @default.
- W2607780746 hasConcept C126255220 @default.
- W2607780746 hasConcept C134342201 @default.
- W2607780746 hasConcept C137836250 @default.
- W2607780746 hasConcept C154945302 @default.
- W2607780746 hasConcept C162324750 @default.
- W2607780746 hasConcept C164752517 @default.
- W2607780746 hasConcept C173801870 @default.
- W2607780746 hasConcept C175202392 @default.
- W2607780746 hasConcept C177973122 @default.
- W2607780746 hasConcept C202286095 @default.
- W2607780746 hasConcept C2777303404 @default.
- W2607780746 hasConcept C33923547 @default.
- W2607780746 hasConcept C38365724 @default.
- W2607780746 hasConcept C41008148 @default.
- W2607780746 hasConcept C47702885 @default.
- W2607780746 hasConcept C50522688 @default.
- W2607780746 hasConcept C50644808 @default.
- W2607780746 hasConcept C86582703 @default.
- W2607780746 hasConceptScore W2607780746C11413529 @default.
- W2607780746 hasConceptScore W2607780746C119857082 @default.
- W2607780746 hasConceptScore W2607780746C126255220 @default.
- W2607780746 hasConceptScore W2607780746C134342201 @default.
- W2607780746 hasConceptScore W2607780746C137836250 @default.
- W2607780746 hasConceptScore W2607780746C154945302 @default.
- W2607780746 hasConceptScore W2607780746C162324750 @default.
- W2607780746 hasConceptScore W2607780746C164752517 @default.
- W2607780746 hasConceptScore W2607780746C173801870 @default.
- W2607780746 hasConceptScore W2607780746C175202392 @default.
- W2607780746 hasConceptScore W2607780746C177973122 @default.
- W2607780746 hasConceptScore W2607780746C202286095 @default.
- W2607780746 hasConceptScore W2607780746C2777303404 @default.
- W2607780746 hasConceptScore W2607780746C33923547 @default.
- W2607780746 hasConceptScore W2607780746C38365724 @default.
- W2607780746 hasConceptScore W2607780746C41008148 @default.
- W2607780746 hasConceptScore W2607780746C47702885 @default.
- W2607780746 hasConceptScore W2607780746C50522688 @default.
- W2607780746 hasConceptScore W2607780746C50644808 @default.
- W2607780746 hasConceptScore W2607780746C86582703 @default.
- W2607780746 hasLocation W26077807461 @default.
- W2607780746 hasLocation W26077807462 @default.
- W2607780746 hasOpenAccess W2607780746 @default.
- W2607780746 hasPrimaryLocation W26077807461 @default.
- W2607780746 hasRelatedWork W1035336224 @default.
- W2607780746 hasRelatedWork W1504177999 @default.
- W2607780746 hasRelatedWork W1509829063 @default.
- W2607780746 hasRelatedWork W1527772799 @default.
- W2607780746 hasRelatedWork W1571346579 @default.
- W2607780746 hasRelatedWork W2007076446 @default.
- W2607780746 hasRelatedWork W2069319653 @default.
- W2607780746 hasRelatedWork W2124931626 @default.
- W2607780746 hasRelatedWork W2127133474 @default.
- W2607780746 hasRelatedWork W2144788105 @default.