Matches in SemOpenAlex for { <https://semopenalex.org/work/W2608221418> ?p ?o ?g. }
- W2608221418 endingPage "158" @default.
- W2608221418 startingPage "129" @default.
- W2608221418 abstract "The successful application of Support Vector Machines (SVMs), kernel methods and other statistical machine learning methods requires selection of model parameters based on estimates of the generalization error. This paper presents a novel approach to systematic model selection through bilevel optimization. We show how modelling tasks for widely used machine learning methods can be formulated as bilevel optimization problems and describe how the approach can address a broad range of tasks—among which are parameter, feature and kernel selection In addition, we also discuss the challenges in implementing these approaches and enumerate opportunities for future work in this emerging research area." @default.
- W2608221418 created "2017-05-05" @default.
- W2608221418 creator A5002789695 @default.
- W2608221418 creator A5003645187 @default.
- W2608221418 creator A5048876983 @default.
- W2608221418 creator A5049799303 @default.
- W2608221418 date "2008-04-09" @default.
- W2608221418 modified "2023-09-25" @default.
- W2608221418 title "Bilevel model selection for support vector machines" @default.
- W2608221418 cites W1503428021 @default.
- W2608221418 cites W1510073064 @default.
- W2608221418 cites W1543439990 @default.
- W2608221418 cites W1588431239 @default.
- W2608221418 cites W1588486985 @default.
- W2608221418 cites W1588628884 @default.
- W2608221418 cites W1604585277 @default.
- W2608221418 cites W17229534 @default.
- W2608221418 cites W1749992802 @default.
- W2608221418 cites W1990381576 @default.
- W2608221418 cites W2005148680 @default.
- W2608221418 cites W2009901815 @default.
- W2608221418 cites W2015893008 @default.
- W2608221418 cites W2031264011 @default.
- W2608221418 cites W2037678919 @default.
- W2608221418 cites W2048799772 @default.
- W2608221418 cites W2078080374 @default.
- W2608221418 cites W2082988498 @default.
- W2608221418 cites W2090770774 @default.
- W2608221418 cites W2093663561 @default.
- W2608221418 cites W2100038678 @default.
- W2608221418 cites W2105497548 @default.
- W2608221418 cites W2106292145 @default.
- W2608221418 cites W2115729631 @default.
- W2608221418 cites W2119479037 @default.
- W2608221418 cites W2119821739 @default.
- W2608221418 cites W2122825543 @default.
- W2608221418 cites W2128255043 @default.
- W2608221418 cites W2130698119 @default.
- W2608221418 cites W2133958955 @default.
- W2608221418 cites W2138218159 @default.
- W2608221418 cites W2143104527 @default.
- W2608221418 cites W2143426320 @default.
- W2608221418 cites W2145295623 @default.
- W2608221418 cites W2151902790 @default.
- W2608221418 cites W2156909104 @default.
- W2608221418 cites W2158001550 @default.
- W2608221418 cites W2166096038 @default.
- W2608221418 cites W2166758048 @default.
- W2608221418 cites W2170356051 @default.
- W2608221418 cites W2170905826 @default.
- W2608221418 cites W217831350 @default.
- W2608221418 cites W2254218369 @default.
- W2608221418 cites W2914746235 @default.
- W2608221418 cites W49930306 @default.
- W2608221418 doi "https://doi.org/10.1090/crmp/045/07" @default.
- W2608221418 hasPublicationYear "2008" @default.
- W2608221418 type Work @default.
- W2608221418 sameAs 2608221418 @default.
- W2608221418 citedByCount "22" @default.
- W2608221418 countsByYear W26082214182012 @default.
- W2608221418 countsByYear W26082214182013 @default.
- W2608221418 countsByYear W26082214182014 @default.
- W2608221418 countsByYear W26082214182015 @default.
- W2608221418 countsByYear W26082214182017 @default.
- W2608221418 countsByYear W26082214182018 @default.
- W2608221418 countsByYear W26082214182021 @default.
- W2608221418 countsByYear W26082214182022 @default.
- W2608221418 crossrefType "book-chapter" @default.
- W2608221418 hasAuthorship W2608221418A5002789695 @default.
- W2608221418 hasAuthorship W2608221418A5003645187 @default.
- W2608221418 hasAuthorship W2608221418A5048876983 @default.
- W2608221418 hasAuthorship W2608221418A5049799303 @default.
- W2608221418 hasBestOaLocation W26082214182 @default.
- W2608221418 hasConcept C104317684 @default.
- W2608221418 hasConcept C12267149 @default.
- W2608221418 hasConcept C154945302 @default.
- W2608221418 hasConcept C185592680 @default.
- W2608221418 hasConcept C40767141 @default.
- W2608221418 hasConcept C41008148 @default.
- W2608221418 hasConcept C55493867 @default.
- W2608221418 hasConcept C81917197 @default.
- W2608221418 hasConcept C92087593 @default.
- W2608221418 hasConceptScore W2608221418C104317684 @default.
- W2608221418 hasConceptScore W2608221418C12267149 @default.
- W2608221418 hasConceptScore W2608221418C154945302 @default.
- W2608221418 hasConceptScore W2608221418C185592680 @default.
- W2608221418 hasConceptScore W2608221418C40767141 @default.
- W2608221418 hasConceptScore W2608221418C41008148 @default.
- W2608221418 hasConceptScore W2608221418C55493867 @default.
- W2608221418 hasConceptScore W2608221418C81917197 @default.
- W2608221418 hasConceptScore W2608221418C92087593 @default.
- W2608221418 hasLocation W26082214181 @default.
- W2608221418 hasLocation W26082214182 @default.
- W2608221418 hasOpenAccess W2608221418 @default.
- W2608221418 hasPrimaryLocation W26082214181 @default.
- W2608221418 hasRelatedWork W169774068 @default.
- W2608221418 hasRelatedWork W1855281999 @default.
- W2608221418 hasRelatedWork W2101819884 @default.