Matches in SemOpenAlex for { <https://semopenalex.org/work/W2608273225> ?p ?o ?g. }
- W2608273225 endingPage "8157" @default.
- W2608273225 startingPage "8148" @default.
- W2608273225 abstract "Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach." @default.
- W2608273225 created "2017-05-05" @default.
- W2608273225 creator A5000809799 @default.
- W2608273225 creator A5033312589 @default.
- W2608273225 creator A5046071840 @default.
- W2608273225 creator A5047341008 @default.
- W2608273225 date "2017-10-01" @default.
- W2608273225 modified "2023-10-16" @default.
- W2608273225 title "Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis" @default.
- W2608273225 cites W1964109643 @default.
- W2608273225 cites W1978994389 @default.
- W2608273225 cites W2004186751 @default.
- W2608273225 cites W2008301400 @default.
- W2608273225 cites W2008616192 @default.
- W2608273225 cites W2014441923 @default.
- W2608273225 cites W2044610659 @default.
- W2608273225 cites W2049740619 @default.
- W2608273225 cites W2052828853 @default.
- W2608273225 cites W2057591286 @default.
- W2608273225 cites W2057904183 @default.
- W2608273225 cites W2058205456 @default.
- W2608273225 cites W2059119683 @default.
- W2608273225 cites W2063823978 @default.
- W2608273225 cites W2068902141 @default.
- W2608273225 cites W2103054970 @default.
- W2608273225 cites W2112575081 @default.
- W2608273225 cites W2121820607 @default.
- W2608273225 cites W2125859607 @default.
- W2608273225 cites W2126702084 @default.
- W2608273225 cites W2137922462 @default.
- W2608273225 cites W2142535750 @default.
- W2608273225 cites W2147703419 @default.
- W2608273225 cites W2158958729 @default.
- W2608273225 cites W2169347809 @default.
- W2608273225 cites W2169488608 @default.
- W2608273225 cites W2191411908 @default.
- W2608273225 cites W2201427885 @default.
- W2608273225 cites W2217088832 @default.
- W2608273225 cites W2289669463 @default.
- W2608273225 cites W2301441242 @default.
- W2608273225 cites W2316093926 @default.
- W2608273225 cites W2494112937 @default.
- W2608273225 cites W2518835065 @default.
- W2608273225 cites W2554364913 @default.
- W2608273225 cites W4245241719 @default.
- W2608273225 cites W4249625715 @default.
- W2608273225 doi "https://doi.org/10.1109/tie.2017.2698422" @default.
- W2608273225 hasPublicationYear "2017" @default.
- W2608273225 type Work @default.
- W2608273225 sameAs 2608273225 @default.
- W2608273225 citedByCount "85" @default.
- W2608273225 countsByYear W26082732252017 @default.
- W2608273225 countsByYear W26082732252018 @default.
- W2608273225 countsByYear W26082732252019 @default.
- W2608273225 countsByYear W26082732252020 @default.
- W2608273225 countsByYear W26082732252021 @default.
- W2608273225 countsByYear W26082732252022 @default.
- W2608273225 countsByYear W26082732252023 @default.
- W2608273225 crossrefType "journal-article" @default.
- W2608273225 hasAuthorship W2608273225A5000809799 @default.
- W2608273225 hasAuthorship W2608273225A5033312589 @default.
- W2608273225 hasAuthorship W2608273225A5046071840 @default.
- W2608273225 hasAuthorship W2608273225A5047341008 @default.
- W2608273225 hasConcept C105795698 @default.
- W2608273225 hasConcept C11413529 @default.
- W2608273225 hasConcept C121332964 @default.
- W2608273225 hasConcept C124101348 @default.
- W2608273225 hasConcept C127313418 @default.
- W2608273225 hasConcept C13280743 @default.
- W2608273225 hasConcept C152745839 @default.
- W2608273225 hasConcept C153874254 @default.
- W2608273225 hasConcept C154945302 @default.
- W2608273225 hasConcept C155512373 @default.
- W2608273225 hasConcept C165205528 @default.
- W2608273225 hasConcept C172707124 @default.
- W2608273225 hasConcept C175551986 @default.
- W2608273225 hasConcept C185798385 @default.
- W2608273225 hasConcept C205649164 @default.
- W2608273225 hasConcept C2778755073 @default.
- W2608273225 hasConcept C33923547 @default.
- W2608273225 hasConcept C41008148 @default.
- W2608273225 hasConcept C62520636 @default.
- W2608273225 hasConcept C89128539 @default.
- W2608273225 hasConceptScore W2608273225C105795698 @default.
- W2608273225 hasConceptScore W2608273225C11413529 @default.
- W2608273225 hasConceptScore W2608273225C121332964 @default.
- W2608273225 hasConceptScore W2608273225C124101348 @default.
- W2608273225 hasConceptScore W2608273225C127313418 @default.
- W2608273225 hasConceptScore W2608273225C13280743 @default.
- W2608273225 hasConceptScore W2608273225C152745839 @default.
- W2608273225 hasConceptScore W2608273225C153874254 @default.
- W2608273225 hasConceptScore W2608273225C154945302 @default.
- W2608273225 hasConceptScore W2608273225C155512373 @default.
- W2608273225 hasConceptScore W2608273225C165205528 @default.
- W2608273225 hasConceptScore W2608273225C172707124 @default.
- W2608273225 hasConceptScore W2608273225C175551986 @default.
- W2608273225 hasConceptScore W2608273225C185798385 @default.
- W2608273225 hasConceptScore W2608273225C205649164 @default.