Matches in SemOpenAlex for { <https://semopenalex.org/work/W2608749340> ?p ?o ?g. }
- W2608749340 endingPage "7487" @default.
- W2608749340 startingPage "7474" @default.
- W2608749340 abstract "In this paper, we tackle the problem of jointly separating instantaneous linear underdetermined mixtures of latent sources from multiple data sets, where the number of sources exceeds that of observations in each data set. Currently available blind source separation (BSS) methods, including joint BSS (JBSS) and underdetermined BSS (UBSS), cannot address this underdetermined problem effectively. We exploit the second-order statistics of observations, and present a novel BSS method, referred to as underdetermined joint BSS for multiple data sets (UJBSS-m), as a generalization of our previous work on two data sets. In this paper, the cross correlation between each pair of data sets is modeled by a third-order tensor in which a set of spatial covariance matrices corresponding to different time delays are stacked. Considering the latent common structure of these constructed tensors, the mixing matrices are jointly estimated via joint canonical polyadic decomposition of these specialized tensors. Furthermore, we recover the sources from each data set separately based on the estimated mixing matrices. Simulation results demonstrate that the proposed UJBSS-m method yields superior performances when compared with commonly used single-set UBSS and JBSS methods." @default.
- W2608749340 created "2017-05-05" @default.
- W2608749340 creator A5006184120 @default.
- W2608749340 creator A5024401174 @default.
- W2608749340 creator A5051587486 @default.
- W2608749340 creator A5083857025 @default.
- W2608749340 date "2017-01-01" @default.
- W2608749340 modified "2023-10-17" @default.
- W2608749340 title "Underdetermined Joint Blind Source Separation of Multiple Datasets" @default.
- W2608749340 cites W1582893002 @default.
- W2608749340 cites W1969838491 @default.
- W2608749340 cites W1974785908 @default.
- W2608749340 cites W1976806256 @default.
- W2608749340 cites W1986326495 @default.
- W2608749340 cites W1989811026 @default.
- W2608749340 cites W1991840148 @default.
- W2608749340 cites W1994995468 @default.
- W2608749340 cites W2024165284 @default.
- W2608749340 cites W2024166170 @default.
- W2608749340 cites W2032665768 @default.
- W2608749340 cites W2043511730 @default.
- W2608749340 cites W2057503509 @default.
- W2608749340 cites W2061225176 @default.
- W2608749340 cites W2066024605 @default.
- W2608749340 cites W2071729267 @default.
- W2608749340 cites W2074709877 @default.
- W2608749340 cites W2078604986 @default.
- W2608749340 cites W2081689238 @default.
- W2608749340 cites W2086261631 @default.
- W2608749340 cites W2090268938 @default.
- W2608749340 cites W2131436045 @default.
- W2608749340 cites W2139457438 @default.
- W2608749340 cites W2158821123 @default.
- W2608749340 cites W2162800060 @default.
- W2608749340 cites W2168975387 @default.
- W2608749340 cites W2195165862 @default.
- W2608749340 cites W2315682511 @default.
- W2608749340 cites W2344461865 @default.
- W2608749340 cites W2528648358 @default.
- W2608749340 cites W2533352123 @default.
- W2608749340 cites W2548651209 @default.
- W2608749340 cites W2592422147 @default.
- W2608749340 cites W2594278748 @default.
- W2608749340 cites W2964313686 @default.
- W2608749340 cites W3104868231 @default.
- W2608749340 cites W4237951138 @default.
- W2608749340 cites W4242200182 @default.
- W2608749340 doi "https://doi.org/10.1109/access.2017.2695497" @default.
- W2608749340 hasPublicationYear "2017" @default.
- W2608749340 type Work @default.
- W2608749340 sameAs 2608749340 @default.
- W2608749340 citedByCount "20" @default.
- W2608749340 countsByYear W26087493402017 @default.
- W2608749340 countsByYear W26087493402018 @default.
- W2608749340 countsByYear W26087493402019 @default.
- W2608749340 countsByYear W26087493402020 @default.
- W2608749340 countsByYear W26087493402021 @default.
- W2608749340 countsByYear W26087493402023 @default.
- W2608749340 crossrefType "journal-article" @default.
- W2608749340 hasAuthorship W2608749340A5006184120 @default.
- W2608749340 hasAuthorship W2608749340A5024401174 @default.
- W2608749340 hasAuthorship W2608749340A5051587486 @default.
- W2608749340 hasAuthorship W2608749340A5083857025 @default.
- W2608749340 hasBestOaLocation W26087493401 @default.
- W2608749340 hasConcept C105795698 @default.
- W2608749340 hasConcept C11413529 @default.
- W2608749340 hasConcept C120317606 @default.
- W2608749340 hasConcept C121332964 @default.
- W2608749340 hasConcept C127162648 @default.
- W2608749340 hasConcept C127413603 @default.
- W2608749340 hasConcept C134306372 @default.
- W2608749340 hasConcept C138777275 @default.
- W2608749340 hasConcept C153180895 @default.
- W2608749340 hasConcept C154945302 @default.
- W2608749340 hasConcept C155281189 @default.
- W2608749340 hasConcept C170154142 @default.
- W2608749340 hasConcept C177148314 @default.
- W2608749340 hasConcept C177264268 @default.
- W2608749340 hasConcept C178650346 @default.
- W2608749340 hasConcept C179690561 @default.
- W2608749340 hasConcept C18555067 @default.
- W2608749340 hasConcept C199360897 @default.
- W2608749340 hasConcept C202444582 @default.
- W2608749340 hasConcept C31258907 @default.
- W2608749340 hasConcept C33923547 @default.
- W2608749340 hasConcept C41008148 @default.
- W2608749340 hasConcept C58489278 @default.
- W2608749340 hasConcept C62520636 @default.
- W2608749340 hasConceptScore W2608749340C105795698 @default.
- W2608749340 hasConceptScore W2608749340C11413529 @default.
- W2608749340 hasConceptScore W2608749340C120317606 @default.
- W2608749340 hasConceptScore W2608749340C121332964 @default.
- W2608749340 hasConceptScore W2608749340C127162648 @default.
- W2608749340 hasConceptScore W2608749340C127413603 @default.
- W2608749340 hasConceptScore W2608749340C134306372 @default.
- W2608749340 hasConceptScore W2608749340C138777275 @default.
- W2608749340 hasConceptScore W2608749340C153180895 @default.
- W2608749340 hasConceptScore W2608749340C154945302 @default.