Matches in SemOpenAlex for { <https://semopenalex.org/work/W2608860984> ?p ?o ?g. }
- W2608860984 endingPage "183" @default.
- W2608860984 startingPage "170" @default.
- W2608860984 abstract "Future space-borne imaging spectrometers could enable global comparative analyses of urban composition. In particular, the high spectral resolution of imaging spectrometry could improve the discrimination of materials that have similar spectral signatures but are functionally dissimilar, such as turfgrass and trees. However, the amount of reflected energy needed to measure narrow-band reflectance with acceptable signal-to-noise ratios means that space-borne imaging spectrometry data will be collected at relatively coarse spatial resolutions, potentially limiting its usefulness for mapping urban composition. In this study, we use Airborne Visible Infra-Red Imaging Spectrometer-Classic and -Next Generation imaging spectrometry acquired in the summer of 2014 over the Santa Barbara, California area to quantify sub-pixel urban composition at fine (4 m) and coarse (18 m) spatial resolutions. We develop and compare spectral libraries of single- and multiple-resolution endmembers, and use Multiple Endmember Spectral Mixture Analysis to estimate sub-pixel fractions of spectrally dissimilar materials (vegetation, impervious, pervious) as well as pairs of spectrally similar materials (turfgrass and tree, paved and roof, non-photosynthetic vegetation and soil) at both resolutions. Fractions were validated using 1 m orthophotography. Overall, fractional accuracy was affected by the spatial resolution of the spectral library and image, and the (dis)similarity of the measured classes. Spectral libraries of multiple-resolution endmembers performed better than single-resolution libraries, likely because they increase within-class variance by capturing multiple levels of material variability that occur across spatial scales. A positive relationship was observed between pixel size and the number of sub-pixel materials, however significant pixel mixing occurred at 4 m resolution, with an average of 48% of all pixels modeled by more than one endmember. Fractional estimates produced by the best performing libraries at 4 m and 18 m resolution correlated with validation fractions, with mean R2 > 0.89 for spectrally dissimilar classes and mean R2 > 0.76 for spectrally similar classes. These results demonstrate the scalability of fractional estimates of urban materials using imaging spectrometry, suggesting its potential for future global urban analyses." @default.
- W2608860984 created "2017-05-05" @default.
- W2608860984 creator A5009000279 @default.
- W2608860984 creator A5015255358 @default.
- W2608860984 creator A5018065949 @default.
- W2608860984 date "2017-06-01" @default.
- W2608860984 modified "2023-10-16" @default.
- W2608860984 title "Mapping spectrally similar urban materials at sub-pixel scales" @default.
- W2608860984 cites W1006483632 @default.
- W2608860984 cites W1495168473 @default.
- W2608860984 cites W1772504446 @default.
- W2608860984 cites W1971876701 @default.
- W2608860984 cites W1972293418 @default.
- W2608860984 cites W1975697333 @default.
- W2608860984 cites W1975727962 @default.
- W2608860984 cites W1992593655 @default.
- W2608860984 cites W1994604181 @default.
- W2608860984 cites W2006314331 @default.
- W2608860984 cites W2007735486 @default.
- W2608860984 cites W2009235968 @default.
- W2608860984 cites W2009283886 @default.
- W2608860984 cites W2012831013 @default.
- W2608860984 cites W2015502627 @default.
- W2608860984 cites W2021597230 @default.
- W2608860984 cites W2022470997 @default.
- W2608860984 cites W2025389829 @default.
- W2608860984 cites W2026332487 @default.
- W2608860984 cites W2029759810 @default.
- W2608860984 cites W2037328426 @default.
- W2608860984 cites W2037407881 @default.
- W2608860984 cites W2040617212 @default.
- W2608860984 cites W2041968401 @default.
- W2608860984 cites W2049827513 @default.
- W2608860984 cites W2053409082 @default.
- W2608860984 cites W2054116204 @default.
- W2608860984 cites W2058891717 @default.
- W2608860984 cites W2060147006 @default.
- W2608860984 cites W2060384859 @default.
- W2608860984 cites W2064491772 @default.
- W2608860984 cites W2083933193 @default.
- W2608860984 cites W2089944219 @default.
- W2608860984 cites W2104391405 @default.
- W2608860984 cites W2107222994 @default.
- W2608860984 cites W2115758154 @default.
- W2608860984 cites W2119879130 @default.
- W2608860984 cites W2122883581 @default.
- W2608860984 cites W2122976738 @default.
- W2608860984 cites W2123907688 @default.
- W2608860984 cites W2125865984 @default.
- W2608860984 cites W2133474313 @default.
- W2608860984 cites W2136635809 @default.
- W2608860984 cites W2143457518 @default.
- W2608860984 cites W2144881411 @default.
- W2608860984 cites W2146062404 @default.
- W2608860984 cites W2150853404 @default.
- W2608860984 cites W2159411209 @default.
- W2608860984 cites W2161786950 @default.
- W2608860984 cites W2162020795 @default.
- W2608860984 cites W2164922709 @default.
- W2608860984 cites W2172063876 @default.
- W2608860984 cites W2266902344 @default.
- W2608860984 cites W2327650336 @default.
- W2608860984 cites W2339843158 @default.
- W2608860984 cites W278157659 @default.
- W2608860984 cites W571594514 @default.
- W2608860984 doi "https://doi.org/10.1016/j.rse.2017.04.013" @default.
- W2608860984 hasPublicationYear "2017" @default.
- W2608860984 type Work @default.
- W2608860984 sameAs 2608860984 @default.
- W2608860984 citedByCount "50" @default.
- W2608860984 countsByYear W26088609842017 @default.
- W2608860984 countsByYear W26088609842018 @default.
- W2608860984 countsByYear W26088609842019 @default.
- W2608860984 countsByYear W26088609842020 @default.
- W2608860984 countsByYear W26088609842021 @default.
- W2608860984 countsByYear W26088609842022 @default.
- W2608860984 countsByYear W26088609842023 @default.
- W2608860984 crossrefType "journal-article" @default.
- W2608860984 hasAuthorship W2608860984A5009000279 @default.
- W2608860984 hasAuthorship W2608860984A5015255358 @default.
- W2608860984 hasAuthorship W2608860984A5018065949 @default.
- W2608860984 hasConcept C111368507 @default.
- W2608860984 hasConcept C120665830 @default.
- W2608860984 hasConcept C121332964 @default.
- W2608860984 hasConcept C124967146 @default.
- W2608860984 hasConcept C127313418 @default.
- W2608860984 hasConcept C1276947 @default.
- W2608860984 hasConcept C132651083 @default.
- W2608860984 hasConcept C142724271 @default.
- W2608860984 hasConcept C1549246 @default.
- W2608860984 hasConcept C154945302 @default.
- W2608860984 hasConcept C158479148 @default.
- W2608860984 hasConcept C159078339 @default.
- W2608860984 hasConcept C160633673 @default.
- W2608860984 hasConcept C176641082 @default.
- W2608860984 hasConcept C183852935 @default.
- W2608860984 hasConcept C18903297 @default.
- W2608860984 hasConcept C205372480 @default.