Matches in SemOpenAlex for { <https://semopenalex.org/work/W2609032487> ?p ?o ?g. }
- W2609032487 abstract "Abstract Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology provides potential advantages in high-throughput functional genomics analysis in prokaryotes over previously established platforms based on recombineering or transposon mutagenesis. In this work, as a proof-of-concept to adopt CRISPR/Cas9 method as a pooled functional genomics analysis platform in prokaryotes, we developed a CRISPR interference (CRISPRi) library consisting of 3,148 single guide RNAs (sgRNAs) targeting the open reading frame (ORF) of 67 genes with known knockout phenotypes and performed pooled screens under two stressed conditions (minimal and acidic medium) in Escherichia coli . Our approach confirmed most of previously described gene-phenotype associations while maintaining < 5% false positive rate, suggesting that CRISPRi screen is both sensitive and specific. Our data also supported the ability of this method to narrow down the candidate gene pool when studying operons, a unique structure in prokaryotic genome. Meanwhile, assessment of multiple loci across treatments enables us to extract several guidelines for sgRNA design for such pooled functional genomics screen. For instance, sgRNAs locating at the first 5% upstream region within ORF exhibit enhanced activity and 10 sgRNAs per gene is suggested to be enough for robust identification of gene-phenotype associations. We also optimized the hit-gene calling algorithm to identify target genes more robustly with even fewer sgRNAs. This work showed that CRISPRi could be adopted as a powerful functional genomics analysis tool in prokaryotes and provided the first guideline for the construction of sgRNA libraries in such applications. Importance To fully exploit the valuable resource of explosive sequenced microbial genomes, high-throughput experimental platform is needed to associate genes and phenotypes at the genome level, giving microbiologists the insight about the genetic structure and physiology of a microorganism. In this work, we adopted CRISPR interference method as a pooled high-throughput functional genomics platform in prokaryotes with Escherichia coli as the model organism. Our data suggested that this method was highly sensitive and specific to map genes with previously known phenotypes, potent to act as a new strategy for high-throughput microbial genetics study with advantages over previously established methods. We also provided the first guideline for the sgRNA library design by comprehensive analysis of the screen data. The concept, gRNA library design rules and open-source scripts of this work should benefit prokaryotic genetics community to apply high-throughput mapping of defined gene set with phenotypes in a broad spectrum of microorganisms." @default.
- W2609032487 created "2017-05-05" @default.
- W2609032487 creator A5018709171 @default.
- W2609032487 creator A5020115290 @default.
- W2609032487 creator A5023119724 @default.
- W2609032487 creator A5058193275 @default.
- W2609032487 creator A5064125880 @default.
- W2609032487 creator A5067225309 @default.
- W2609032487 creator A5086547633 @default.
- W2609032487 creator A5088768408 @default.
- W2609032487 date "2017-04-22" @default.
- W2609032487 modified "2023-10-15" @default.
- W2609032487 title "Pooled CRISPR interference screens enable high-throughput functional genomics study and elucidate new rules for guide RNA library design inEscherichia coli" @default.
- W2609032487 cites W1781531090 @default.
- W2609032487 cites W1788293483 @default.
- W2609032487 cites W1869792624 @default.
- W2609032487 cites W1879165674 @default.
- W2609032487 cites W1898780412 @default.
- W2609032487 cites W1971439989 @default.
- W2609032487 cites W1976391205 @default.
- W2609032487 cites W1994145955 @default.
- W2609032487 cites W1999468885 @default.
- W2609032487 cites W2000004958 @default.
- W2609032487 cites W2000046950 @default.
- W2609032487 cites W2001861614 @default.
- W2609032487 cites W2006373538 @default.
- W2609032487 cites W2006998897 @default.
- W2609032487 cites W2019977198 @default.
- W2609032487 cites W2026487613 @default.
- W2609032487 cites W2029945156 @default.
- W2609032487 cites W2030924818 @default.
- W2609032487 cites W2030974598 @default.
- W2609032487 cites W2031211461 @default.
- W2609032487 cites W2036176224 @default.
- W2609032487 cites W2038161360 @default.
- W2609032487 cites W2039705224 @default.
- W2609032487 cites W2047360542 @default.
- W2609032487 cites W2048593866 @default.
- W2609032487 cites W2053631174 @default.
- W2609032487 cites W2056253073 @default.
- W2609032487 cites W2064815984 @default.
- W2609032487 cites W2065335949 @default.
- W2609032487 cites W2085630244 @default.
- W2609032487 cites W2097862362 @default.
- W2609032487 cites W2108263412 @default.
- W2609032487 cites W2115420193 @default.
- W2609032487 cites W2117924928 @default.
- W2609032487 cites W2120263648 @default.
- W2609032487 cites W2120932131 @default.
- W2609032487 cites W2127862779 @default.
- W2609032487 cites W2130634584 @default.
- W2609032487 cites W2136728173 @default.
- W2609032487 cites W2142299289 @default.
- W2609032487 cites W2142437744 @default.
- W2609032487 cites W2148641266 @default.
- W2609032487 cites W2152505144 @default.
- W2609032487 cites W2155208047 @default.
- W2609032487 cites W2156252266 @default.
- W2609032487 cites W2159099958 @default.
- W2609032487 cites W2160253662 @default.
- W2609032487 cites W2168013812 @default.
- W2609032487 cites W2170039745 @default.
- W2609032487 cites W2201689894 @default.
- W2609032487 cites W2232370058 @default.
- W2609032487 cites W2234629144 @default.
- W2609032487 cites W2252568502 @default.
- W2609032487 cites W2267005942 @default.
- W2609032487 cites W2273981063 @default.
- W2609032487 cites W2295025783 @default.
- W2609032487 cites W2299638516 @default.
- W2609032487 cites W2304875546 @default.
- W2609032487 cites W2312592272 @default.
- W2609032487 cites W2315132400 @default.
- W2609032487 cites W2345535076 @default.
- W2609032487 cites W2346337789 @default.
- W2609032487 cites W2407174002 @default.
- W2609032487 cites W2460650498 @default.
- W2609032487 cites W2462180542 @default.
- W2609032487 cites W2515108514 @default.
- W2609032487 cites W2533641274 @default.
- W2609032487 cites W2544093984 @default.
- W2609032487 cites W2561535772 @default.
- W2609032487 doi "https://doi.org/10.1101/129668" @default.
- W2609032487 hasPublicationYear "2017" @default.
- W2609032487 type Work @default.
- W2609032487 sameAs 2609032487 @default.
- W2609032487 citedByCount "3" @default.
- W2609032487 countsByYear W26090324872018 @default.
- W2609032487 countsByYear W26090324872020 @default.
- W2609032487 crossrefType "posted-content" @default.
- W2609032487 hasAuthorship W2609032487A5018709171 @default.
- W2609032487 hasAuthorship W2609032487A5020115290 @default.
- W2609032487 hasAuthorship W2609032487A5023119724 @default.
- W2609032487 hasAuthorship W2609032487A5058193275 @default.
- W2609032487 hasAuthorship W2609032487A5064125880 @default.
- W2609032487 hasAuthorship W2609032487A5067225309 @default.
- W2609032487 hasAuthorship W2609032487A5086547633 @default.
- W2609032487 hasAuthorship W2609032487A5088768408 @default.
- W2609032487 hasBestOaLocation W26090324871 @default.
- W2609032487 hasConcept C104317684 @default.