Matches in SemOpenAlex for { <https://semopenalex.org/work/W2609227564> ?p ?o ?g. }
- W2609227564 abstract "This article examines techniques for analyzing the spatial patterns of point and area features. Section “ Descriptive Measures of Point Features ” introduces centrographic measures to describe the geographic distribution of point features in terms of central tendency and spatial dispersion. Central tendency measures include mean center, median center, and central feature, and spatial dispersion measures include standard distance and deviational ellipse. Section “ Inferential Measures of One Type of Points ” discusses inferential measures of one type of points to assess whether an observed pattern is random. The density-based approach, such as quadrat analysis, concerns whether the density of observed points exhibits a random, dispersed, or clustered pattern. The distance-based approach, for example ordered neighbor statistics, considers if distances between points are larger (dispersed) or smaller (clustered) than those of a random pattern. Ripley’s K-function also considers point density, but depicts changes in point density at different geographical scales (spatial lags). Section “ Collocation Analysis of Two Types of Points ” examines colocation analysis of two types of points in order to measure the extent of their vicinity from each other. The cross K (or bivariate K) function measures the ratio of observed overall density of type B points within a specified distance of a type A point over what we would expect by chance. The colocation quotient examines the overall association between observed and expected numbers of type B points in proximity to type A points, and assesses whether type A points are spatially colocated with, or isolated from, B points, or whether the pattern is random. The colocation quotient also has a local version to reveal the spatial variability of correlation between two point sets and a corresponding statistical significance test. Section “ Area-Based Analysis of Spatial Autocorrelation ” analyzes spatial autocorrelation of areal features. The methods include the join-count statistic (limited for data of binary values), and the more commonly known Moran’s I, Geary Ratio, and Getis-G statistic. Section “ Regionalization Methods ” introduces several GIS-automated regionalization methods, such as REDCAP and mixed-level regionalization, to aggregate smaller areal units into larger regions. Each section has some illustrative examples to explain the implementation process with sample data and programs to download." @default.
- W2609227564 created "2017-05-05" @default.
- W2609227564 creator A5008934383 @default.
- W2609227564 creator A5058020623 @default.
- W2609227564 date "2018-01-01" @default.
- W2609227564 modified "2023-09-24" @default.
- W2609227564 title "Spatial Analysis Methods" @default.
- W2609227564 cites W1546760337 @default.
- W2609227564 cites W1599043334 @default.
- W2609227564 cites W1843684519 @default.
- W2609227564 cites W1961431199 @default.
- W2609227564 cites W1965610010 @default.
- W2609227564 cites W1979360315 @default.
- W2609227564 cites W1987264627 @default.
- W2609227564 cites W1996233177 @default.
- W2609227564 cites W2004151538 @default.
- W2609227564 cites W2004934538 @default.
- W2609227564 cites W2008911215 @default.
- W2609227564 cites W2009124915 @default.
- W2609227564 cites W2010523897 @default.
- W2609227564 cites W2020861455 @default.
- W2609227564 cites W2025841116 @default.
- W2609227564 cites W2026169687 @default.
- W2609227564 cites W2032101051 @default.
- W2609227564 cites W2046334581 @default.
- W2609227564 cites W2058529928 @default.
- W2609227564 cites W2066342308 @default.
- W2609227564 cites W2066721369 @default.
- W2609227564 cites W2067344376 @default.
- W2609227564 cites W2070381999 @default.
- W2609227564 cites W2074416976 @default.
- W2609227564 cites W2080042714 @default.
- W2609227564 cites W2096720678 @default.
- W2609227564 cites W2118898434 @default.
- W2609227564 cites W2131586477 @default.
- W2609227564 cites W2136347018 @default.
- W2609227564 cites W2139839146 @default.
- W2609227564 cites W2142685435 @default.
- W2609227564 cites W2143022286 @default.
- W2609227564 cites W2158184062 @default.
- W2609227564 cites W2306946018 @default.
- W2609227564 cites W2315666945 @default.
- W2609227564 cites W2335976283 @default.
- W2609227564 cites W2399767476 @default.
- W2609227564 cites W2465490635 @default.
- W2609227564 cites W2506841798 @default.
- W2609227564 cites W2588936968 @default.
- W2609227564 cites W2740610126 @default.
- W2609227564 cites W2903919837 @default.
- W2609227564 cites W3123895940 @default.
- W2609227564 cites W326635671 @default.
- W2609227564 cites W641398957 @default.
- W2609227564 cites W2735423426 @default.
- W2609227564 doi "https://doi.org/10.1016/b978-0-12-409548-9.09598-1" @default.
- W2609227564 hasPublicationYear "2018" @default.
- W2609227564 type Work @default.
- W2609227564 sameAs 2609227564 @default.
- W2609227564 citedByCount "1" @default.
- W2609227564 countsByYear W26092275642020 @default.
- W2609227564 crossrefType "book-chapter" @default.
- W2609227564 hasAuthorship W2609227564A5008934383 @default.
- W2609227564 hasAuthorship W2609227564A5058020623 @default.
- W2609227564 hasConcept C105795698 @default.
- W2609227564 hasConcept C122342681 @default.
- W2609227564 hasConcept C158709400 @default.
- W2609227564 hasConcept C159620131 @default.
- W2609227564 hasConcept C173727882 @default.
- W2609227564 hasConcept C18903297 @default.
- W2609227564 hasConcept C193722300 @default.
- W2609227564 hasConcept C205649164 @default.
- W2609227564 hasConcept C2524010 @default.
- W2609227564 hasConcept C28719098 @default.
- W2609227564 hasConcept C33923547 @default.
- W2609227564 hasConcept C64341305 @default.
- W2609227564 hasConcept C86803240 @default.
- W2609227564 hasConcept C88871306 @default.
- W2609227564 hasConceptScore W2609227564C105795698 @default.
- W2609227564 hasConceptScore W2609227564C122342681 @default.
- W2609227564 hasConceptScore W2609227564C158709400 @default.
- W2609227564 hasConceptScore W2609227564C159620131 @default.
- W2609227564 hasConceptScore W2609227564C173727882 @default.
- W2609227564 hasConceptScore W2609227564C18903297 @default.
- W2609227564 hasConceptScore W2609227564C193722300 @default.
- W2609227564 hasConceptScore W2609227564C205649164 @default.
- W2609227564 hasConceptScore W2609227564C2524010 @default.
- W2609227564 hasConceptScore W2609227564C28719098 @default.
- W2609227564 hasConceptScore W2609227564C33923547 @default.
- W2609227564 hasConceptScore W2609227564C64341305 @default.
- W2609227564 hasConceptScore W2609227564C86803240 @default.
- W2609227564 hasConceptScore W2609227564C88871306 @default.
- W2609227564 hasLocation W26092275641 @default.
- W2609227564 hasOpenAccess W2609227564 @default.
- W2609227564 hasPrimaryLocation W26092275641 @default.
- W2609227564 hasRelatedWork W184988497 @default.
- W2609227564 hasRelatedWork W1877687928 @default.
- W2609227564 hasRelatedWork W1970481080 @default.
- W2609227564 hasRelatedWork W1976113374 @default.
- W2609227564 hasRelatedWork W2003484039 @default.
- W2609227564 hasRelatedWork W2013337384 @default.
- W2609227564 hasRelatedWork W2038649695 @default.