Matches in SemOpenAlex for { <https://semopenalex.org/work/W2609303685> ?p ?o ?g. }
- W2609303685 endingPage "130" @default.
- W2609303685 startingPage "130" @default.
- W2609303685 abstract "In current upscaling of in situ surface soil moisture practices, commonly used novel statistical or machine learning-based regression models combined with remote sensing data show some advantages in accurately capturing the satellite footprint scale of specific local or regional surface soil moisture. However, the performance of most models is largely determined by the size of the training data and the limited generalization ability to accomplish correlation extraction in regression models, which are unsuitable for larger scale practices. In this paper, a deep learning model was proposed to estimate soil moisture on a national scale. The deep learning model has the advantage of representing nonlinearities and modeling complex relationships from large-scale data. To illustrate the deep learning model for soil moisture estimation, the croplands of China were selected as the study area, and four years of Visible Infrared Imaging Radiometer Suite (VIIRS) raw data records (RDR) were used as input parameters, then the models were trained and soil moisture estimates were obtained. Results demonstrate that the estimated models captured the complex relationship between the remote sensing variables and in situ surface soil moisture with an adjusted coefficient of determination of R ¯ 2 = 0.9875 and a root mean square error (RMSE) of 0.0084 in China. These results were more accurate than the Soil Moisture Active Passive (SMAP) active radar soil moisture products and the Global Land data assimilation system (GLDAS) 0–10 cm depth soil moisture data. Our study suggests that deep learning model have potential for operational applications of upscaling in situ surface soil moisture data at the national scale." @default.
- W2609303685 created "2017-05-05" @default.
- W2609303685 creator A5001389153 @default.
- W2609303685 creator A5006270190 @default.
- W2609303685 creator A5039385537 @default.
- W2609303685 creator A5058746208 @default.
- W2609303685 creator A5080186827 @default.
- W2609303685 date "2017-04-27" @default.
- W2609303685 modified "2023-10-14" @default.
- W2609303685 title "Upscaling of Surface Soil Moisture Using a Deep Learning Model with VIIRS RDR" @default.
- W2609303685 cites W1958291604 @default.
- W2609303685 cites W1968487307 @default.
- W2609303685 cites W1981356787 @default.
- W2609303685 cites W1985864794 @default.
- W2609303685 cites W2000394269 @default.
- W2609303685 cites W2001910808 @default.
- W2609303685 cites W2002679701 @default.
- W2609303685 cites W2006929658 @default.
- W2609303685 cites W2019235640 @default.
- W2609303685 cites W2025515353 @default.
- W2609303685 cites W2025745000 @default.
- W2609303685 cites W2028240797 @default.
- W2609303685 cites W2029316659 @default.
- W2609303685 cites W2039348932 @default.
- W2609303685 cites W2039908035 @default.
- W2609303685 cites W2052483370 @default.
- W2609303685 cites W2055308682 @default.
- W2609303685 cites W2074015478 @default.
- W2609303685 cites W2076196252 @default.
- W2609303685 cites W2087827165 @default.
- W2609303685 cites W2100495367 @default.
- W2609303685 cites W2100560964 @default.
- W2609303685 cites W2116149712 @default.
- W2609303685 cites W2123744475 @default.
- W2609303685 cites W2137807472 @default.
- W2609303685 cites W2142140549 @default.
- W2609303685 cites W2148459381 @default.
- W2609303685 cites W2148825692 @default.
- W2609303685 cites W2161425513 @default.
- W2609303685 cites W2163922914 @default.
- W2609303685 cites W2518704075 @default.
- W2609303685 cites W2593639353 @default.
- W2609303685 cites W2913932916 @default.
- W2609303685 cites W3217457548 @default.
- W2609303685 doi "https://doi.org/10.3390/ijgi6050130" @default.
- W2609303685 hasPublicationYear "2017" @default.
- W2609303685 type Work @default.
- W2609303685 sameAs 2609303685 @default.
- W2609303685 citedByCount "34" @default.
- W2609303685 countsByYear W26093036852018 @default.
- W2609303685 countsByYear W26093036852019 @default.
- W2609303685 countsByYear W26093036852020 @default.
- W2609303685 countsByYear W26093036852021 @default.
- W2609303685 countsByYear W26093036852022 @default.
- W2609303685 countsByYear W26093036852023 @default.
- W2609303685 crossrefType "journal-article" @default.
- W2609303685 hasAuthorship W2609303685A5001389153 @default.
- W2609303685 hasAuthorship W2609303685A5006270190 @default.
- W2609303685 hasAuthorship W2609303685A5039385537 @default.
- W2609303685 hasAuthorship W2609303685A5058746208 @default.
- W2609303685 hasAuthorship W2609303685A5080186827 @default.
- W2609303685 hasBestOaLocation W26093036851 @default.
- W2609303685 hasConcept C105795698 @default.
- W2609303685 hasConcept C120189094 @default.
- W2609303685 hasConcept C127313418 @default.
- W2609303685 hasConcept C127413603 @default.
- W2609303685 hasConcept C139945424 @default.
- W2609303685 hasConcept C146978453 @default.
- W2609303685 hasConcept C153294291 @default.
- W2609303685 hasConcept C159390177 @default.
- W2609303685 hasConcept C176864760 @default.
- W2609303685 hasConcept C187320778 @default.
- W2609303685 hasConcept C19269812 @default.
- W2609303685 hasConcept C205649164 @default.
- W2609303685 hasConcept C24552861 @default.
- W2609303685 hasConcept C24939127 @default.
- W2609303685 hasConcept C2777701342 @default.
- W2609303685 hasConcept C2778755073 @default.
- W2609303685 hasConcept C33923547 @default.
- W2609303685 hasConcept C39432304 @default.
- W2609303685 hasConcept C58640448 @default.
- W2609303685 hasConcept C62649853 @default.
- W2609303685 hasConceptScore W2609303685C105795698 @default.
- W2609303685 hasConceptScore W2609303685C120189094 @default.
- W2609303685 hasConceptScore W2609303685C127313418 @default.
- W2609303685 hasConceptScore W2609303685C127413603 @default.
- W2609303685 hasConceptScore W2609303685C139945424 @default.
- W2609303685 hasConceptScore W2609303685C146978453 @default.
- W2609303685 hasConceptScore W2609303685C153294291 @default.
- W2609303685 hasConceptScore W2609303685C159390177 @default.
- W2609303685 hasConceptScore W2609303685C176864760 @default.
- W2609303685 hasConceptScore W2609303685C187320778 @default.
- W2609303685 hasConceptScore W2609303685C19269812 @default.
- W2609303685 hasConceptScore W2609303685C205649164 @default.
- W2609303685 hasConceptScore W2609303685C24552861 @default.
- W2609303685 hasConceptScore W2609303685C24939127 @default.
- W2609303685 hasConceptScore W2609303685C2777701342 @default.
- W2609303685 hasConceptScore W2609303685C2778755073 @default.