Matches in SemOpenAlex for { <https://semopenalex.org/work/W2609365846> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2609365846 abstract "Approximation algorithms are a commonly used tool for designing efficient algorithmic solutions for intractable problems, at the expense of the quality of the output solution. A prominent technique for designing such algorithms is the use of Linear Programming (LP) relaxations. An optimal solution to such a relaxation provides a bound on the objective value of the optimal integral solution, to which we compare the integral solution we return. In this context, when studying a specific problem, two natural questions often arise: What is a strong LP relaxation for this problem, and how can we exploit it? Over the course of the past few decades, a significant amount of effort has been expended by the research community in order to answer these questions for a variety of interesting intractable problems. Although there exist multiple problems for which we have designed LP relaxations that achieve best-possible guarantees, there still exist numerous problems for which we either have no strong LP relaxations, or do not know how to use them. The main focus of this thesis is extending our understanding of such strong relaxations. We focus on designing good approximation algorithms for certain allocation problems, by employing a class of strong LP relaxations, called configuration-LPs. For many such allocation problems, the best-known results are derived by using simple and natural LP relaxations, whereas configuration-LPs have been used successfully on several occasions in order to break pre-existing barriers set by weaker relaxations. However, our understanding of configuration-LPs is far from complete for many problems. Therefore, understanding and using these relaxations to the farthest extent possible is a quite intriguing question. Answering this question could result in improved approximation algorithms for a wide variety of allocation problems. The first problem we address in this thesis is the restricted max-min fair allocation problem. Prior to our work, the best known result provided an $Omega(1)$-approximation that ran in polynomial time. Also, it was known how to estimate the value of an optimal solution to the problem within a factor of $1/(4+c)$, for any $c>0$, by solving the corresponding configuration-LP. Our first contribution in this thesis is the design of a $1/13$-approximation algorithm for the problem, using the configuration-LP. Specifically, although our algorithm is fully combinatorial, it consists of a local-search procedure that is guaranteed to succeed only when the configuration-LP is feasible. In order to establish the correctness and running time of the algorithm, it is crucial to use the configuration-LP in our analysis. The second problem we study is the scheduling of jobs on unrelated machines in order to minimize the sum of weighted completion times. For this problem, the best known approximation algorithm achieves a ratio of $3/2-r$, for some small $r>0$. Our second contribution in this thesis is the improvement of this ratio to $(1+sqrt{2})/2+c$, for any $c>0$, for the special case of the problem where the jobs have uniform Smith ratios. To achieve this ratio, we design a randomized rounding algorithm that rounds solutions to the corresponding configuration-LP. Through a careful examination of the distribution this randomized algorithm outputs, we identify the one that maximizes the approximation ratio, and we then upper bound the ratio this worst-case distribution exhibits by $(1+sqrt{2})/2+c$." @default.
- W2609365846 created "2017-05-05" @default.
- W2609365846 creator A5021996741 @default.
- W2609365846 date "2017-01-01" @default.
- W2609365846 modified "2023-09-23" @default.
- W2609365846 title "Applications of Strong Convex Relaxations to Allocation Problems" @default.
- W2609365846 doi "https://doi.org/10.5075/epfl-thesis-7468" @default.
- W2609365846 hasPublicationYear "2017" @default.
- W2609365846 type Work @default.
- W2609365846 sameAs 2609365846 @default.
- W2609365846 citedByCount "0" @default.
- W2609365846 crossrefType "journal-article" @default.
- W2609365846 hasAuthorship W2609365846A5021996741 @default.
- W2609365846 hasConcept C111472728 @default.
- W2609365846 hasConcept C112680207 @default.
- W2609365846 hasConcept C120665830 @default.
- W2609365846 hasConcept C121332964 @default.
- W2609365846 hasConcept C126255220 @default.
- W2609365846 hasConcept C138885662 @default.
- W2609365846 hasConcept C148764684 @default.
- W2609365846 hasConcept C151730666 @default.
- W2609365846 hasConcept C15744967 @default.
- W2609365846 hasConcept C177264268 @default.
- W2609365846 hasConcept C192209626 @default.
- W2609365846 hasConcept C199360897 @default.
- W2609365846 hasConcept C2524010 @default.
- W2609365846 hasConcept C25360446 @default.
- W2609365846 hasConcept C2776029896 @default.
- W2609365846 hasConcept C2779343474 @default.
- W2609365846 hasConcept C2780586882 @default.
- W2609365846 hasConcept C33923547 @default.
- W2609365846 hasConcept C41008148 @default.
- W2609365846 hasConcept C41045048 @default.
- W2609365846 hasConcept C77805123 @default.
- W2609365846 hasConcept C86803240 @default.
- W2609365846 hasConceptScore W2609365846C111472728 @default.
- W2609365846 hasConceptScore W2609365846C112680207 @default.
- W2609365846 hasConceptScore W2609365846C120665830 @default.
- W2609365846 hasConceptScore W2609365846C121332964 @default.
- W2609365846 hasConceptScore W2609365846C126255220 @default.
- W2609365846 hasConceptScore W2609365846C138885662 @default.
- W2609365846 hasConceptScore W2609365846C148764684 @default.
- W2609365846 hasConceptScore W2609365846C151730666 @default.
- W2609365846 hasConceptScore W2609365846C15744967 @default.
- W2609365846 hasConceptScore W2609365846C177264268 @default.
- W2609365846 hasConceptScore W2609365846C192209626 @default.
- W2609365846 hasConceptScore W2609365846C199360897 @default.
- W2609365846 hasConceptScore W2609365846C2524010 @default.
- W2609365846 hasConceptScore W2609365846C25360446 @default.
- W2609365846 hasConceptScore W2609365846C2776029896 @default.
- W2609365846 hasConceptScore W2609365846C2779343474 @default.
- W2609365846 hasConceptScore W2609365846C2780586882 @default.
- W2609365846 hasConceptScore W2609365846C33923547 @default.
- W2609365846 hasConceptScore W2609365846C41008148 @default.
- W2609365846 hasConceptScore W2609365846C41045048 @default.
- W2609365846 hasConceptScore W2609365846C77805123 @default.
- W2609365846 hasConceptScore W2609365846C86803240 @default.
- W2609365846 hasLocation W26093658461 @default.
- W2609365846 hasOpenAccess W2609365846 @default.
- W2609365846 hasPrimaryLocation W26093658461 @default.
- W2609365846 hasRelatedWork W1504777543 @default.
- W2609365846 hasRelatedWork W1590926391 @default.
- W2609365846 hasRelatedWork W1939743025 @default.
- W2609365846 hasRelatedWork W2008854809 @default.
- W2609365846 hasRelatedWork W207515246 @default.
- W2609365846 hasRelatedWork W2088586390 @default.
- W2609365846 hasRelatedWork W2097382020 @default.
- W2609365846 hasRelatedWork W2141752622 @default.
- W2609365846 hasRelatedWork W2154256239 @default.
- W2609365846 hasRelatedWork W2165102171 @default.
- W2609365846 hasRelatedWork W2240464899 @default.
- W2609365846 hasRelatedWork W2299801417 @default.
- W2609365846 hasRelatedWork W2407532194 @default.
- W2609365846 hasRelatedWork W2569791907 @default.
- W2609365846 hasRelatedWork W2577436344 @default.
- W2609365846 hasRelatedWork W2741070676 @default.
- W2609365846 hasRelatedWork W2950823092 @default.
- W2609365846 hasRelatedWork W3036830777 @default.
- W2609365846 hasRelatedWork W3094989159 @default.
- W2609365846 hasRelatedWork W2592224851 @default.
- W2609365846 isParatext "false" @default.
- W2609365846 isRetracted "false" @default.
- W2609365846 magId "2609365846" @default.
- W2609365846 workType "article" @default.