Matches in SemOpenAlex for { <https://semopenalex.org/work/W2609422016> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2609422016 abstract "In this article, we continue the study of the problem of $L^p$-boundedness of the maximal operator $M$ associated to averages along isotropic dilates of a given, smooth hypersurface $S$ of finite type in 3-dimensional Euclidean space. An essentially complete answer to this problem had been given about seven years ago by the last named two authors in joint work with M. Kempe for the case where the height h of the given surface is at least two. In the present article, we turn to the case $h<2.$ More precisely, in this Part I, we study the case where $h<2,$ assuming that $S$ is contained in a sufficiently small neighborhood of a given point $x^0in S$ at which both principal curvatures of $S$ vanish. Under these assumptions and a natural transversality assumption, we show that, as in the case where $hge 2,$ the critical Lebesgue exponent for the boundedness of $M$ remains to be $p_c=h,$ even though the proof of this result turns out to require new methods, some of which are inspired by the more recent work by the last named two authors on Fourier restriction to S. Results on the case where $h<2$ and exactly one principal curvature of $S$ does not vanish at $x^0$ will appear elsewhere." @default.
- W2609422016 created "2017-05-05" @default.
- W2609422016 creator A5019494925 @default.
- W2609422016 creator A5030660770 @default.
- W2609422016 creator A5036963156 @default.
- W2609422016 creator A5052894915 @default.
- W2609422016 date "2017-04-21" @default.
- W2609422016 modified "2023-10-17" @default.
- W2609422016 title "Estimates for maximal functions associated to hypersurfaces in $Bbb R^3$ with height $h<2:$ Part I" @default.
- W2609422016 cites W1501613243 @default.
- W2609422016 cites W1530034100 @default.
- W2609422016 cites W1584610719 @default.
- W2609422016 cites W1991085513 @default.
- W2609422016 cites W2017366951 @default.
- W2609422016 cites W2018618924 @default.
- W2609422016 cites W2029770333 @default.
- W2609422016 cites W2049173141 @default.
- W2609422016 cites W2072778147 @default.
- W2609422016 cites W2081722215 @default.
- W2609422016 cites W2127740906 @default.
- W2609422016 cites W2331537921 @default.
- W2609422016 cites W2501698674 @default.
- W2609422016 cites W2592711125 @default.
- W2609422016 doi "https://doi.org/10.48550/arxiv.1704.06520" @default.
- W2609422016 hasPublicationYear "2017" @default.
- W2609422016 type Work @default.
- W2609422016 sameAs 2609422016 @default.
- W2609422016 citedByCount "0" @default.
- W2609422016 crossrefType "posted-content" @default.
- W2609422016 hasAuthorship W2609422016A5019494925 @default.
- W2609422016 hasAuthorship W2609422016A5030660770 @default.
- W2609422016 hasAuthorship W2609422016A5036963156 @default.
- W2609422016 hasAuthorship W2609422016A5052894915 @default.
- W2609422016 hasBestOaLocation W26094220161 @default.
- W2609422016 hasConcept C114410712 @default.
- W2609422016 hasConcept C114614502 @default.
- W2609422016 hasConcept C134306372 @default.
- W2609422016 hasConcept C138885662 @default.
- W2609422016 hasConcept C14158598 @default.
- W2609422016 hasConcept C16977076 @default.
- W2609422016 hasConcept C175017881 @default.
- W2609422016 hasConcept C186450821 @default.
- W2609422016 hasConcept C188422159 @default.
- W2609422016 hasConcept C18903297 @default.
- W2609422016 hasConcept C195065555 @default.
- W2609422016 hasConcept C202444582 @default.
- W2609422016 hasConcept C24167531 @default.
- W2609422016 hasConcept C2524010 @default.
- W2609422016 hasConcept C2777299769 @default.
- W2609422016 hasConcept C2778572836 @default.
- W2609422016 hasConcept C2780388253 @default.
- W2609422016 hasConcept C33923547 @default.
- W2609422016 hasConcept C41895202 @default.
- W2609422016 hasConcept C86803240 @default.
- W2609422016 hasConceptScore W2609422016C114410712 @default.
- W2609422016 hasConceptScore W2609422016C114614502 @default.
- W2609422016 hasConceptScore W2609422016C134306372 @default.
- W2609422016 hasConceptScore W2609422016C138885662 @default.
- W2609422016 hasConceptScore W2609422016C14158598 @default.
- W2609422016 hasConceptScore W2609422016C16977076 @default.
- W2609422016 hasConceptScore W2609422016C175017881 @default.
- W2609422016 hasConceptScore W2609422016C186450821 @default.
- W2609422016 hasConceptScore W2609422016C188422159 @default.
- W2609422016 hasConceptScore W2609422016C18903297 @default.
- W2609422016 hasConceptScore W2609422016C195065555 @default.
- W2609422016 hasConceptScore W2609422016C202444582 @default.
- W2609422016 hasConceptScore W2609422016C24167531 @default.
- W2609422016 hasConceptScore W2609422016C2524010 @default.
- W2609422016 hasConceptScore W2609422016C2777299769 @default.
- W2609422016 hasConceptScore W2609422016C2778572836 @default.
- W2609422016 hasConceptScore W2609422016C2780388253 @default.
- W2609422016 hasConceptScore W2609422016C33923547 @default.
- W2609422016 hasConceptScore W2609422016C41895202 @default.
- W2609422016 hasConceptScore W2609422016C86803240 @default.
- W2609422016 hasLocation W26094220161 @default.
- W2609422016 hasOpenAccess W2609422016 @default.
- W2609422016 hasPrimaryLocation W26094220161 @default.
- W2609422016 hasRelatedWork W1565442613 @default.
- W2609422016 hasRelatedWork W1596528476 @default.
- W2609422016 hasRelatedWork W1885836294 @default.
- W2609422016 hasRelatedWork W2158678928 @default.
- W2609422016 hasRelatedWork W2609422016 @default.
- W2609422016 hasRelatedWork W2903032918 @default.
- W2609422016 hasRelatedWork W2945774080 @default.
- W2609422016 hasRelatedWork W3101281486 @default.
- W2609422016 hasRelatedWork W3165447636 @default.
- W2609422016 hasRelatedWork W2963365694 @default.
- W2609422016 isParatext "false" @default.
- W2609422016 isRetracted "false" @default.
- W2609422016 magId "2609422016" @default.
- W2609422016 workType "article" @default.