Matches in SemOpenAlex for { <https://semopenalex.org/work/W2609524438> ?p ?o ?g. }
- W2609524438 endingPage "409" @default.
- W2609524438 startingPage "409" @default.
- W2609524438 abstract "This study demonstrates a number of methods for using field sampling and observed lake characteristics and patterns to improve techniques for development of algae remote sensing models and applications. As satellite and airborne sensors improve and their data are more readily available, applications of models to estimate water quality via remote sensing are becoming more practical for local water quality monitoring, particularly of surface algal conditions. Despite the increasing number of applications, there are significant concerns associated with remote sensing model development and application, several of which are addressed in this study. These concerns include: (1) selecting sensors which are suitable for the spatial and temporal variability in the water body; (2) determining appropriate uses of near-coincident data in empirical model calibration; and (3) recognizing potential limitations of remote sensing measurements which are biased toward surface and near-surface conditions. We address these issues in three lakes in the Great Salt Lake surface water system (namely the Great Salt Lake, Farmington Bay, and Utah Lake) through sampling at scales that are representative of commonly used sensors, repeated sampling, and sampling at both near-surface depths and throughout the water column. The variability across distances representative of the spatial resolutions of Landsat, SENTINEL-2 and MODIS sensors suggests that these sensors are appropriate for this lake system. We also use observed temporal variability in the system to evaluate sensors. These relationships proved to be complex, and observed temporal variability indicates the revisit time of Landsat may be problematic for detecting short events in some lakes, while it may be sufficient for other areas of the system with lower short-term variability. Temporal variability patterns in these lakes are also used to assess near-coincident data in empirical model development. Finally, relationships between the surface and water column conditions illustrate potential issues with near-surface remote sensing, particularly when there are events that cause mixing in the water column." @default.
- W2609524438 created "2017-05-05" @default.
- W2609524438 creator A5007620618 @default.
- W2609524438 creator A5037440526 @default.
- W2609524438 creator A5042233469 @default.
- W2609524438 creator A5084920909 @default.
- W2609524438 date "2017-04-26" @default.
- W2609524438 modified "2023-10-16" @default.
- W2609524438 title "Spatiotemporal Variability of Lake Water Quality in the Context of Remote Sensing Models" @default.
- W2609524438 cites W1498849780 @default.
- W2609524438 cites W1503087350 @default.
- W2609524438 cites W1781803412 @default.
- W2609524438 cites W1966936685 @default.
- W2609524438 cites W1996386786 @default.
- W2609524438 cites W2024859456 @default.
- W2609524438 cites W2033003384 @default.
- W2609524438 cites W2037675284 @default.
- W2609524438 cites W2041243193 @default.
- W2609524438 cites W2042737933 @default.
- W2609524438 cites W2057231564 @default.
- W2609524438 cites W2088665921 @default.
- W2609524438 cites W2093457913 @default.
- W2609524438 cites W2103105534 @default.
- W2609524438 cites W2105750700 @default.
- W2609524438 cites W2121171476 @default.
- W2609524438 cites W2152858797 @default.
- W2609524438 cites W2288727789 @default.
- W2609524438 cites W2462669499 @default.
- W2609524438 cites W2501170978 @default.
- W2609524438 doi "https://doi.org/10.3390/rs9050409" @default.
- W2609524438 hasPublicationYear "2017" @default.
- W2609524438 type Work @default.
- W2609524438 sameAs 2609524438 @default.
- W2609524438 citedByCount "36" @default.
- W2609524438 countsByYear W26095244382017 @default.
- W2609524438 countsByYear W26095244382018 @default.
- W2609524438 countsByYear W26095244382019 @default.
- W2609524438 countsByYear W26095244382020 @default.
- W2609524438 countsByYear W26095244382021 @default.
- W2609524438 countsByYear W26095244382022 @default.
- W2609524438 countsByYear W26095244382023 @default.
- W2609524438 crossrefType "journal-article" @default.
- W2609524438 hasAuthorship W2609524438A5007620618 @default.
- W2609524438 hasAuthorship W2609524438A5037440526 @default.
- W2609524438 hasAuthorship W2609524438A5042233469 @default.
- W2609524438 hasAuthorship W2609524438A5084920909 @default.
- W2609524438 hasBestOaLocation W26095244381 @default.
- W2609524438 hasConcept C105795698 @default.
- W2609524438 hasConcept C106131492 @default.
- W2609524438 hasConcept C111368507 @default.
- W2609524438 hasConcept C115880899 @default.
- W2609524438 hasConcept C127313418 @default.
- W2609524438 hasConcept C127413603 @default.
- W2609524438 hasConcept C140779682 @default.
- W2609524438 hasConcept C146978453 @default.
- W2609524438 hasConcept C151730666 @default.
- W2609524438 hasConcept C18903297 @default.
- W2609524438 hasConcept C19269812 @default.
- W2609524438 hasConcept C2777489503 @default.
- W2609524438 hasConcept C2779343474 @default.
- W2609524438 hasConcept C2780797713 @default.
- W2609524438 hasConcept C31972630 @default.
- W2609524438 hasConcept C33923547 @default.
- W2609524438 hasConcept C39432304 @default.
- W2609524438 hasConcept C41008148 @default.
- W2609524438 hasConcept C62649853 @default.
- W2609524438 hasConcept C8625798 @default.
- W2609524438 hasConcept C86803240 @default.
- W2609524438 hasConcept C87717796 @default.
- W2609524438 hasConcept C94747663 @default.
- W2609524438 hasConceptScore W2609524438C105795698 @default.
- W2609524438 hasConceptScore W2609524438C106131492 @default.
- W2609524438 hasConceptScore W2609524438C111368507 @default.
- W2609524438 hasConceptScore W2609524438C115880899 @default.
- W2609524438 hasConceptScore W2609524438C127313418 @default.
- W2609524438 hasConceptScore W2609524438C127413603 @default.
- W2609524438 hasConceptScore W2609524438C140779682 @default.
- W2609524438 hasConceptScore W2609524438C146978453 @default.
- W2609524438 hasConceptScore W2609524438C151730666 @default.
- W2609524438 hasConceptScore W2609524438C18903297 @default.
- W2609524438 hasConceptScore W2609524438C19269812 @default.
- W2609524438 hasConceptScore W2609524438C2777489503 @default.
- W2609524438 hasConceptScore W2609524438C2779343474 @default.
- W2609524438 hasConceptScore W2609524438C2780797713 @default.
- W2609524438 hasConceptScore W2609524438C31972630 @default.
- W2609524438 hasConceptScore W2609524438C33923547 @default.
- W2609524438 hasConceptScore W2609524438C39432304 @default.
- W2609524438 hasConceptScore W2609524438C41008148 @default.
- W2609524438 hasConceptScore W2609524438C62649853 @default.
- W2609524438 hasConceptScore W2609524438C8625798 @default.
- W2609524438 hasConceptScore W2609524438C86803240 @default.
- W2609524438 hasConceptScore W2609524438C87717796 @default.
- W2609524438 hasConceptScore W2609524438C94747663 @default.
- W2609524438 hasFunder F4320306107 @default.
- W2609524438 hasIssue "5" @default.
- W2609524438 hasLocation W26095244381 @default.
- W2609524438 hasLocation W26095244382 @default.
- W2609524438 hasOpenAccess W2609524438 @default.