Matches in SemOpenAlex for { <https://semopenalex.org/work/W2609706670> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2609706670 endingPage "165" @default.
- W2609706670 startingPage "165" @default.
- W2609706670 abstract "This thesis demonstrates how artificial intelligence algorithms can be applied to the operation of heating ventilation, and air conditioning (HVAC) systems in commercial scale buildings. Two different levels of operation are considered: gaining stable, precise control of feedback loops and the minimization of energy consumption from the entire HVAC plant. The control algorithms are used to predict both process and plant outputs, and the predictions are used in the optimizations. These techniques are also compared with more conventional methods of control.Artificial neural networks (ANNs) are computer-based emulators of biological cognitive systems. They have the unusual ability to learn relationships between sets of information that would be difficult to quantify using conventional means. For the experiments discussed in this thesis, the networks were used to find a correlation between the inputs and outputs of a number of physical processes--in this sense the ANNs behave much like nonlinear regressions.A properly trained ANN can be used to predict the response of a feedback loop and provides the base for a predictive control algorithm. Such a controller is extremely effective and can ensure critically damped response over the effective domain of nonlinear processes. The ability of an ANN-based controller to maintain the desired setpoint is shown to be as good or better than that of a more conventional PID controller.Similarly, a network trained to predict the energy consumption of a plant can be used to find setpoints which will minimize plant power while still maintaining comfort conditions. An HVAC laboratory was used to simulate several building configurations. ANNs were then tested to explore their ability to predict the energy consumption of the plant-wide systems. Once a suitable model was found, the HVAC system was subjected to day-long tests representing several load levels. These tests were repeated using three different plant control algorithms, including one where the plant setpoints were modified by an ANN controller. All three were able to maintain comfort levels, but at varying average power levels. The neural network controller had the smallest average and also a lower peak value than one of the other methods. (Abstract shortened by UMI.)" @default.
- W2609706670 created "2017-05-05" @default.
- W2609706670 creator A5013387467 @default.
- W2609706670 creator A5072383216 @default.
- W2609706670 date "1992-01-01" @default.
- W2609706670 modified "2023-09-26" @default.
- W2609706670 title "Artificial neural networks for use in building systems control and energy management" @default.
- W2609706670 hasPublicationYear "1992" @default.
- W2609706670 type Work @default.
- W2609706670 sameAs 2609706670 @default.
- W2609706670 citedByCount "1" @default.
- W2609706670 crossrefType "journal-article" @default.
- W2609706670 hasAuthorship W2609706670A5013387467 @default.
- W2609706670 hasAuthorship W2609706670A5072383216 @default.
- W2609706670 hasConcept C103742991 @default.
- W2609706670 hasConcept C111919701 @default.
- W2609706670 hasConcept C119599485 @default.
- W2609706670 hasConcept C122346748 @default.
- W2609706670 hasConcept C12302492 @default.
- W2609706670 hasConcept C127413603 @default.
- W2609706670 hasConcept C133731056 @default.
- W2609706670 hasConcept C154945302 @default.
- W2609706670 hasConcept C17500928 @default.
- W2609706670 hasConcept C203479927 @default.
- W2609706670 hasConcept C2775924081 @default.
- W2609706670 hasConcept C2780165032 @default.
- W2609706670 hasConcept C41008148 @default.
- W2609706670 hasConcept C47116090 @default.
- W2609706670 hasConcept C47446073 @default.
- W2609706670 hasConcept C50644808 @default.
- W2609706670 hasConcept C536315585 @default.
- W2609706670 hasConcept C6557445 @default.
- W2609706670 hasConcept C78519656 @default.
- W2609706670 hasConcept C86803240 @default.
- W2609706670 hasConcept C98045186 @default.
- W2609706670 hasConceptScore W2609706670C103742991 @default.
- W2609706670 hasConceptScore W2609706670C111919701 @default.
- W2609706670 hasConceptScore W2609706670C119599485 @default.
- W2609706670 hasConceptScore W2609706670C122346748 @default.
- W2609706670 hasConceptScore W2609706670C12302492 @default.
- W2609706670 hasConceptScore W2609706670C127413603 @default.
- W2609706670 hasConceptScore W2609706670C133731056 @default.
- W2609706670 hasConceptScore W2609706670C154945302 @default.
- W2609706670 hasConceptScore W2609706670C17500928 @default.
- W2609706670 hasConceptScore W2609706670C203479927 @default.
- W2609706670 hasConceptScore W2609706670C2775924081 @default.
- W2609706670 hasConceptScore W2609706670C2780165032 @default.
- W2609706670 hasConceptScore W2609706670C41008148 @default.
- W2609706670 hasConceptScore W2609706670C47116090 @default.
- W2609706670 hasConceptScore W2609706670C47446073 @default.
- W2609706670 hasConceptScore W2609706670C50644808 @default.
- W2609706670 hasConceptScore W2609706670C536315585 @default.
- W2609706670 hasConceptScore W2609706670C6557445 @default.
- W2609706670 hasConceptScore W2609706670C78519656 @default.
- W2609706670 hasConceptScore W2609706670C86803240 @default.
- W2609706670 hasConceptScore W2609706670C98045186 @default.
- W2609706670 hasLocation W26097066701 @default.
- W2609706670 hasOpenAccess W2609706670 @default.
- W2609706670 hasPrimaryLocation W26097066701 @default.
- W2609706670 hasRelatedWork W1964590287 @default.
- W2609706670 hasRelatedWork W2056395118 @default.
- W2609706670 hasRelatedWork W2118979484 @default.
- W2609706670 hasRelatedWork W2164683828 @default.
- W2609706670 hasRelatedWork W218335477 @default.
- W2609706670 hasRelatedWork W2401106145 @default.
- W2609706670 hasRelatedWork W2479500801 @default.
- W2609706670 hasRelatedWork W2609895621 @default.
- W2609706670 hasRelatedWork W2802736871 @default.
- W2609706670 hasRelatedWork W2806504487 @default.
- W2609706670 hasRelatedWork W2922467626 @default.
- W2609706670 hasRelatedWork W3006173931 @default.
- W2609706670 hasRelatedWork W3014460705 @default.
- W2609706670 hasRelatedWork W3016212986 @default.
- W2609706670 hasRelatedWork W3090872711 @default.
- W2609706670 hasRelatedWork W3204281908 @default.
- W2609706670 hasRelatedWork W650313688 @default.
- W2609706670 hasRelatedWork W8959908 @default.
- W2609706670 hasRelatedWork W1954692653 @default.
- W2609706670 hasRelatedWork W2226909681 @default.
- W2609706670 isParatext "false" @default.
- W2609706670 isRetracted "false" @default.
- W2609706670 magId "2609706670" @default.
- W2609706670 workType "article" @default.