Matches in SemOpenAlex for { <https://semopenalex.org/work/W2609751027> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2609751027 abstract "The technological advancement and sophistication in cameras and gadgets prompt researchers to have focus on image analysis and text understanding. The deep learning techniques demonstrated well to assess the potential for classifying text from natural scene images as reported in recent years. There are variety of deep learning approaches that prospects the detection and recognition of text, effectively from images. In this work, we presented Arabic scene text recognition using Convolutional Neural Networks (ConvNets) as a deep learning classifier. As the scene text data is slanted and skewed, thus to deal with maximum variations, we employ five orientations with respect to single occurrence of a character. The training is formulated by keeping filter size 3 × 3 and 5 × 5 with stride value as 1 and 2. During text classification phase, we trained network with distinct learning rates. Our approach reported encouraging results on recognition of Arabic characters from segmented Arabic scene images." @default.
- W2609751027 created "2017-05-05" @default.
- W2609751027 creator A5017072744 @default.
- W2609751027 creator A5033585021 @default.
- W2609751027 creator A5058861950 @default.
- W2609751027 creator A5080361608 @default.
- W2609751027 date "2017-04-01" @default.
- W2609751027 modified "2023-09-27" @default.
- W2609751027 title "Deep learning based isolated Arabic scene character recognition" @default.
- W2609751027 cites W2005003075 @default.
- W2609751027 cites W2035729865 @default.
- W2609751027 cites W2067902014 @default.
- W2609751027 cites W2069472161 @default.
- W2609751027 cites W2078997308 @default.
- W2609751027 cites W2083442372 @default.
- W2609751027 cites W2150259535 @default.
- W2609751027 cites W2158710217 @default.
- W2609751027 cites W2191616647 @default.
- W2609751027 cites W2964226591 @default.
- W2609751027 doi "https://doi.org/10.1109/asar.2017.8067758" @default.
- W2609751027 hasPublicationYear "2017" @default.
- W2609751027 type Work @default.
- W2609751027 sameAs 2609751027 @default.
- W2609751027 citedByCount "28" @default.
- W2609751027 countsByYear W26097510272018 @default.
- W2609751027 countsByYear W26097510272019 @default.
- W2609751027 countsByYear W26097510272020 @default.
- W2609751027 countsByYear W26097510272021 @default.
- W2609751027 countsByYear W26097510272022 @default.
- W2609751027 countsByYear W26097510272023 @default.
- W2609751027 crossrefType "proceedings-article" @default.
- W2609751027 hasAuthorship W2609751027A5017072744 @default.
- W2609751027 hasAuthorship W2609751027A5033585021 @default.
- W2609751027 hasAuthorship W2609751027A5058861950 @default.
- W2609751027 hasAuthorship W2609751027A5080361608 @default.
- W2609751027 hasBestOaLocation W26097510272 @default.
- W2609751027 hasConcept C108583219 @default.
- W2609751027 hasConcept C115961682 @default.
- W2609751027 hasConcept C120665830 @default.
- W2609751027 hasConcept C121332964 @default.
- W2609751027 hasConcept C138885662 @default.
- W2609751027 hasConcept C153180895 @default.
- W2609751027 hasConcept C154945302 @default.
- W2609751027 hasConcept C192209626 @default.
- W2609751027 hasConcept C204321447 @default.
- W2609751027 hasConcept C2524010 @default.
- W2609751027 hasConcept C2780861071 @default.
- W2609751027 hasConcept C2983589003 @default.
- W2609751027 hasConcept C2987247673 @default.
- W2609751027 hasConcept C33923547 @default.
- W2609751027 hasConcept C41008148 @default.
- W2609751027 hasConcept C41895202 @default.
- W2609751027 hasConcept C50644808 @default.
- W2609751027 hasConcept C81363708 @default.
- W2609751027 hasConcept C95623464 @default.
- W2609751027 hasConcept C96455323 @default.
- W2609751027 hasConceptScore W2609751027C108583219 @default.
- W2609751027 hasConceptScore W2609751027C115961682 @default.
- W2609751027 hasConceptScore W2609751027C120665830 @default.
- W2609751027 hasConceptScore W2609751027C121332964 @default.
- W2609751027 hasConceptScore W2609751027C138885662 @default.
- W2609751027 hasConceptScore W2609751027C153180895 @default.
- W2609751027 hasConceptScore W2609751027C154945302 @default.
- W2609751027 hasConceptScore W2609751027C192209626 @default.
- W2609751027 hasConceptScore W2609751027C204321447 @default.
- W2609751027 hasConceptScore W2609751027C2524010 @default.
- W2609751027 hasConceptScore W2609751027C2780861071 @default.
- W2609751027 hasConceptScore W2609751027C2983589003 @default.
- W2609751027 hasConceptScore W2609751027C2987247673 @default.
- W2609751027 hasConceptScore W2609751027C33923547 @default.
- W2609751027 hasConceptScore W2609751027C41008148 @default.
- W2609751027 hasConceptScore W2609751027C41895202 @default.
- W2609751027 hasConceptScore W2609751027C50644808 @default.
- W2609751027 hasConceptScore W2609751027C81363708 @default.
- W2609751027 hasConceptScore W2609751027C95623464 @default.
- W2609751027 hasConceptScore W2609751027C96455323 @default.
- W2609751027 hasLocation W26097510271 @default.
- W2609751027 hasLocation W26097510272 @default.
- W2609751027 hasOpenAccess W2609751027 @default.
- W2609751027 hasPrimaryLocation W26097510271 @default.
- W2609751027 hasRelatedWork W2731899572 @default.
- W2609751027 hasRelatedWork W2999805992 @default.
- W2609751027 hasRelatedWork W3011074480 @default.
- W2609751027 hasRelatedWork W3116150086 @default.
- W2609751027 hasRelatedWork W3133861977 @default.
- W2609751027 hasRelatedWork W3192840557 @default.
- W2609751027 hasRelatedWork W4200173597 @default.
- W2609751027 hasRelatedWork W4291897433 @default.
- W2609751027 hasRelatedWork W4312417841 @default.
- W2609751027 hasRelatedWork W4321369474 @default.
- W2609751027 isParatext "false" @default.
- W2609751027 isRetracted "false" @default.
- W2609751027 magId "2609751027" @default.
- W2609751027 workType "article" @default.