Matches in SemOpenAlex for { <https://semopenalex.org/work/W2609996329> ?p ?o ?g. }
- W2609996329 endingPage "592" @default.
- W2609996329 startingPage "581" @default.
- W2609996329 abstract "Spatiotemporal explicit information on paddy rice distribution is essential for ensuring food security and sustainable environmental management. Paddy rice mapping algorithm through the Combined Consideration of Vegetation phenology and Surface water variations (CCVS) has been efficiently applied based on the 8day composites time series datasets. However, the great challenge for phenology-based algorithms introduced by unpromising data availability in middle/high spatial resolution imagery, such as frequent cloud cover and coarse temporal resolution, remained unsolved. This study addressed this challenge through developing an automatic and Adaptive paddy Rice Mapping Method (ARMM) based on the cloud frequency and spectral separability. The proposed ARMM method was tested on the Landsat 8 Operational Land Imager (OLI) image (path/row 118/028) in the Songnen Plain in Northeast China in 2015. First, the whole study region was automatically and adaptively subdivided into undisturbed and disturbed regions through a per-pixel strategy based on Landsat image data availability during key phenological stage. Second, image objects were extracted from approximately cloud-free images in disturbed and undisturbed regions, respectively. Third, phenological metrics and other feature images from individual or multiple images were developed. Finally, a flexible automatic paddy rice mapping strategy was implemented. For undisturbed region, an object-oriented CCVS method was utilized to take the full advantages of phenology-based method. For disturbed region, Random Forest (RF) classifier was exploited using training data from CCVS-derived results in undisturbed region and feature images adaptively selected with full considerations of spectral separability and the spatiotemporal coverage. The ARMM method was verified by 473 reference sites, with an overall accuracy of 95.77% and kappa index of 0.9107. This study provided an efficient strategy to accommodate the challenges of phenology-based approaches through transferring knowledge in parts of a satellite scene with finer time series to targets (other parts) with deficit data availability." @default.
- W2609996329 created "2017-05-05" @default.
- W2609996329 creator A5002591515 @default.
- W2609996329 creator A5027121719 @default.
- W2609996329 creator A5060050761 @default.
- W2609996329 creator A5071372667 @default.
- W2609996329 creator A5073049841 @default.
- W2609996329 date "2017-11-01" @default.
- W2609996329 modified "2023-10-02" @default.
- W2609996329 title "Automatic and adaptive paddy rice mapping using Landsat images: Case study in Songnen Plain in Northeast China" @default.
- W2609996329 cites W1605688901 @default.
- W2609996329 cites W1964669384 @default.
- W2609996329 cites W1964789567 @default.
- W2609996329 cites W1965093652 @default.
- W2609996329 cites W1967542684 @default.
- W2609996329 cites W1968299234 @default.
- W2609996329 cites W1970219967 @default.
- W2609996329 cites W1970687962 @default.
- W2609996329 cites W1978034823 @default.
- W2609996329 cites W1979972384 @default.
- W2609996329 cites W1980547211 @default.
- W2609996329 cites W1986658172 @default.
- W2609996329 cites W1990244654 @default.
- W2609996329 cites W2005905734 @default.
- W2609996329 cites W2006929658 @default.
- W2609996329 cites W2007686386 @default.
- W2609996329 cites W2011572981 @default.
- W2609996329 cites W2014970225 @default.
- W2609996329 cites W2030851497 @default.
- W2609996329 cites W2032798963 @default.
- W2609996329 cites W2034394311 @default.
- W2609996329 cites W2044020331 @default.
- W2609996329 cites W2055505446 @default.
- W2609996329 cites W2055718260 @default.
- W2609996329 cites W2057584717 @default.
- W2609996329 cites W2058723831 @default.
- W2609996329 cites W2082580279 @default.
- W2609996329 cites W2094677081 @default.
- W2609996329 cites W2099507093 @default.
- W2609996329 cites W2113667364 @default.
- W2609996329 cites W2120174322 @default.
- W2609996329 cites W2131884408 @default.
- W2609996329 cites W2138973222 @default.
- W2609996329 cites W2153548937 @default.
- W2609996329 cites W2176432844 @default.
- W2609996329 cites W2227410105 @default.
- W2609996329 cites W2261059368 @default.
- W2609996329 cites W2279106898 @default.
- W2609996329 cites W2298468320 @default.
- W2609996329 cites W2344328155 @default.
- W2609996329 cites W2438450043 @default.
- W2609996329 cites W2468363661 @default.
- W2609996329 cites W250311148 @default.
- W2609996329 cites W2555988103 @default.
- W2609996329 cites W2557992764 @default.
- W2609996329 cites W2558258243 @default.
- W2609996329 cites W2584130088 @default.
- W2609996329 cites W2911964244 @default.
- W2609996329 cites W600580655 @default.
- W2609996329 cites W645597650 @default.
- W2609996329 doi "https://doi.org/10.1016/j.scitotenv.2017.03.221" @default.
- W2609996329 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28454031" @default.
- W2609996329 hasPublicationYear "2017" @default.
- W2609996329 type Work @default.
- W2609996329 sameAs 2609996329 @default.
- W2609996329 citedByCount "44" @default.
- W2609996329 countsByYear W26099963292018 @default.
- W2609996329 countsByYear W26099963292019 @default.
- W2609996329 countsByYear W26099963292020 @default.
- W2609996329 countsByYear W26099963292021 @default.
- W2609996329 countsByYear W26099963292022 @default.
- W2609996329 countsByYear W26099963292023 @default.
- W2609996329 crossrefType "journal-article" @default.
- W2609996329 hasAuthorship W2609996329A5002591515 @default.
- W2609996329 hasAuthorship W2609996329A5027121719 @default.
- W2609996329 hasAuthorship W2609996329A5060050761 @default.
- W2609996329 hasAuthorship W2609996329A5071372667 @default.
- W2609996329 hasAuthorship W2609996329A5073049841 @default.
- W2609996329 hasConcept C111919701 @default.
- W2609996329 hasConcept C138885662 @default.
- W2609996329 hasConcept C154945302 @default.
- W2609996329 hasConcept C160633673 @default.
- W2609996329 hasConcept C18903297 @default.
- W2609996329 hasConcept C205649164 @default.
- W2609996329 hasConcept C2776401178 @default.
- W2609996329 hasConcept C39432304 @default.
- W2609996329 hasConcept C41008148 @default.
- W2609996329 hasConcept C41895202 @default.
- W2609996329 hasConcept C51417038 @default.
- W2609996329 hasConcept C62649853 @default.
- W2609996329 hasConcept C79974875 @default.
- W2609996329 hasConcept C86803240 @default.
- W2609996329 hasConceptScore W2609996329C111919701 @default.
- W2609996329 hasConceptScore W2609996329C138885662 @default.
- W2609996329 hasConceptScore W2609996329C154945302 @default.
- W2609996329 hasConceptScore W2609996329C160633673 @default.
- W2609996329 hasConceptScore W2609996329C18903297 @default.
- W2609996329 hasConceptScore W2609996329C205649164 @default.