Matches in SemOpenAlex for { <https://semopenalex.org/work/W2610177791> ?p ?o ?g. }
- W2610177791 endingPage "212" @default.
- W2610177791 startingPage "198" @default.
- W2610177791 abstract "Fingerprint recognition, and in particular minutiae-based matching methods, are ever more deeply implanted into many companies and institutions. As the size of their identification databases grows, there is a need of flexible, reliable structures for fingerprint recognition systems. In this paper, we propose a generic decomposition methodology for minutiae-based matching algorithms that splits the calculation of the matching scores into lower level steps that can be carried out in parallel in a flexible manner. The decomposition allows to adapt any minutiae-based algorithm to frameworks such as MapReduce or Apache Spark. General and specific guidelines to enhance the performance of the adapted matching algorithms are also described. The proposal is evaluated over two matching algorithms, two Big Data frameworks (Apache Hadoop and Apache Spark) and two large-scale fingerprint databases, with promising results concerning the identification time, in addition to the reliability, scalability, distribution and availability capabilities that are provided by such underlying frameworks." @default.
- W2610177791 created "2017-05-12" @default.
- W2610177791 creator A5045016749 @default.
- W2610177791 creator A5055435058 @default.
- W2610177791 creator A5065386213 @default.
- W2610177791 creator A5082713397 @default.
- W2610177791 date "2017-10-01" @default.
- W2610177791 modified "2023-10-14" @default.
- W2610177791 title "Minutiae-based fingerprint matching decomposition: Methodology for big data frameworks" @default.
- W2610177791 cites W1554813035 @default.
- W2610177791 cites W1963519970 @default.
- W2610177791 cites W1965308487 @default.
- W2610177791 cites W1981446961 @default.
- W2610177791 cites W1984043404 @default.
- W2610177791 cites W1999262829 @default.
- W2610177791 cites W2003178620 @default.
- W2610177791 cites W2014470493 @default.
- W2610177791 cites W2021240193 @default.
- W2610177791 cites W2025824454 @default.
- W2610177791 cites W2032826816 @default.
- W2610177791 cites W2040263621 @default.
- W2610177791 cites W2052655256 @default.
- W2610177791 cites W2079727701 @default.
- W2610177791 cites W2081930221 @default.
- W2610177791 cites W2101576074 @default.
- W2610177791 cites W2109574129 @default.
- W2610177791 cites W2117780027 @default.
- W2610177791 cites W2117995429 @default.
- W2610177791 cites W2122027310 @default.
- W2610177791 cites W2133719507 @default.
- W2610177791 cites W2142685553 @default.
- W2610177791 cites W2154091957 @default.
- W2610177791 cites W2160367574 @default.
- W2610177791 cites W2164524421 @default.
- W2610177791 cites W2166168249 @default.
- W2610177791 cites W2468725466 @default.
- W2610177791 cites W2531171608 @default.
- W2610177791 cites W783096245 @default.
- W2610177791 cites W2344285843 @default.
- W2610177791 doi "https://doi.org/10.1016/j.ins.2017.05.001" @default.
- W2610177791 hasPublicationYear "2017" @default.
- W2610177791 type Work @default.
- W2610177791 sameAs 2610177791 @default.
- W2610177791 citedByCount "24" @default.
- W2610177791 countsByYear W26101777912017 @default.
- W2610177791 countsByYear W26101777912018 @default.
- W2610177791 countsByYear W26101777912019 @default.
- W2610177791 countsByYear W26101777912020 @default.
- W2610177791 countsByYear W26101777912021 @default.
- W2610177791 countsByYear W26101777912022 @default.
- W2610177791 countsByYear W26101777912023 @default.
- W2610177791 crossrefType "journal-article" @default.
- W2610177791 hasAuthorship W2610177791A5045016749 @default.
- W2610177791 hasAuthorship W2610177791A5055435058 @default.
- W2610177791 hasAuthorship W2610177791A5065386213 @default.
- W2610177791 hasAuthorship W2610177791A5082713397 @default.
- W2610177791 hasBestOaLocation W26101777912 @default.
- W2610177791 hasConcept C105795698 @default.
- W2610177791 hasConcept C116834253 @default.
- W2610177791 hasConcept C121332964 @default.
- W2610177791 hasConcept C124101348 @default.
- W2610177791 hasConcept C124681953 @default.
- W2610177791 hasConcept C153180895 @default.
- W2610177791 hasConcept C154945302 @default.
- W2610177791 hasConcept C165064840 @default.
- W2610177791 hasConcept C168406668 @default.
- W2610177791 hasConcept C18903297 @default.
- W2610177791 hasConcept C199360897 @default.
- W2610177791 hasConcept C2777826928 @default.
- W2610177791 hasConcept C2778755073 @default.
- W2610177791 hasConcept C2781215313 @default.
- W2610177791 hasConcept C33923547 @default.
- W2610177791 hasConcept C41008148 @default.
- W2610177791 hasConcept C48044578 @default.
- W2610177791 hasConcept C59822182 @default.
- W2610177791 hasConcept C61455927 @default.
- W2610177791 hasConcept C62520636 @default.
- W2610177791 hasConcept C67174900 @default.
- W2610177791 hasConcept C75684735 @default.
- W2610177791 hasConcept C77088390 @default.
- W2610177791 hasConcept C86803240 @default.
- W2610177791 hasConceptScore W2610177791C105795698 @default.
- W2610177791 hasConceptScore W2610177791C116834253 @default.
- W2610177791 hasConceptScore W2610177791C121332964 @default.
- W2610177791 hasConceptScore W2610177791C124101348 @default.
- W2610177791 hasConceptScore W2610177791C124681953 @default.
- W2610177791 hasConceptScore W2610177791C153180895 @default.
- W2610177791 hasConceptScore W2610177791C154945302 @default.
- W2610177791 hasConceptScore W2610177791C165064840 @default.
- W2610177791 hasConceptScore W2610177791C168406668 @default.
- W2610177791 hasConceptScore W2610177791C18903297 @default.
- W2610177791 hasConceptScore W2610177791C199360897 @default.
- W2610177791 hasConceptScore W2610177791C2777826928 @default.
- W2610177791 hasConceptScore W2610177791C2778755073 @default.
- W2610177791 hasConceptScore W2610177791C2781215313 @default.
- W2610177791 hasConceptScore W2610177791C33923547 @default.
- W2610177791 hasConceptScore W2610177791C41008148 @default.
- W2610177791 hasConceptScore W2610177791C48044578 @default.