Matches in SemOpenAlex for { <https://semopenalex.org/work/W2610239563> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2610239563 endingPage "1330" @default.
- W2610239563 startingPage "1323" @default.
- W2610239563 abstract "Core Ideas Accurate yield prediction is needed for effective sensor‐based N management. Field testing is needed to develop reliable algorithms for silage and grain corn. For the most accurate yield prediction, crop sensing should be done at V6 or later. Predictions for corn silage were more accurate than for corn grain. The use of in‐season‐estimated yield is preferred across variable sites. Crop sensing is a promising approach for predicting corn ( Zea mays L.) yield. Yield prediction is the first step in development of algorithms for sensor‐based N management. Here, we evaluated the impact of (i) timing of sensing (growth stage), and (ii) method of reporting sensor data on estimations of corn grain and silage yield in New York. Sensor data were reported as the normalized difference vegetation index (NDVI), in‐season estimated yield (INSEY) expressed as NDVI divided by days after planting (DAP; INSEY DAP ), growing degree days (GGD; INSEY GGD ), and the inverse simple ratio (ISR; [1–NDVI]/[1+NDVI]) divided by DAP (INSEY ISR ). To evaluate timing of sensing, corn of six fertility trials was scanned at every growth stage between V4 and V11. The replicated trials had up to six N rates (0, 56, 112, 168, 224, and 336 kg ha −1 ). The V7 sensor and yield data from zero‐N plots of nine additional on‐farm trials (varying histories) were added to derive yield algorithms for New York. Drought at three sites in 2016 negatively impacted the accuracy of sensor‐based grain yield estimates ( R 2 < 0.27). Excluding these sites, most accurate yield predictions were obtained from V6 onward. Across different locations and independent of reporting method, INSEY data at V7 predicted yield with an R 2 > 0.70 (grain) and >0.77 (silage). We conclude that INSEY data obtained at V7 can be used to accurately predict corn grain and silage yields in non‐drought conditions in New York." @default.
- W2610239563 created "2017-05-12" @default.
- W2610239563 creator A5066947393 @default.
- W2610239563 creator A5077734698 @default.
- W2610239563 date "2017-07-01" @default.
- W2610239563 modified "2023-10-16" @default.
- W2610239563 title "In‐Season Estimation of Corn Yield Potential Using Proximal Sensing" @default.
- W2610239563 cites W1993945131 @default.
- W2610239563 cites W1994738086 @default.
- W2610239563 cites W1997145284 @default.
- W2610239563 cites W2004675407 @default.
- W2610239563 cites W2018170267 @default.
- W2610239563 cites W2035945221 @default.
- W2610239563 cites W2039257123 @default.
- W2610239563 cites W2046551756 @default.
- W2610239563 cites W2084674497 @default.
- W2610239563 cites W2105442343 @default.
- W2610239563 cites W2124252298 @default.
- W2610239563 cites W2135620895 @default.
- W2610239563 cites W2151880387 @default.
- W2610239563 cites W2154920661 @default.
- W2610239563 cites W2164672226 @default.
- W2610239563 cites W2297248169 @default.
- W2610239563 cites W2571431619 @default.
- W2610239563 doi "https://doi.org/10.2134/agronj2016.12.0732" @default.
- W2610239563 hasPublicationYear "2017" @default.
- W2610239563 type Work @default.
- W2610239563 sameAs 2610239563 @default.
- W2610239563 citedByCount "35" @default.
- W2610239563 countsByYear W26102395632018 @default.
- W2610239563 countsByYear W26102395632019 @default.
- W2610239563 countsByYear W26102395632020 @default.
- W2610239563 countsByYear W26102395632021 @default.
- W2610239563 countsByYear W26102395632022 @default.
- W2610239563 countsByYear W26102395632023 @default.
- W2610239563 crossrefType "journal-article" @default.
- W2610239563 hasAuthorship W2610239563A5066947393 @default.
- W2610239563 hasAuthorship W2610239563A5077734698 @default.
- W2610239563 hasBestOaLocation W26102395631 @default.
- W2610239563 hasConcept C134121241 @default.
- W2610239563 hasConcept C137580998 @default.
- W2610239563 hasConcept C137660486 @default.
- W2610239563 hasConcept C1549246 @default.
- W2610239563 hasConcept C168741863 @default.
- W2610239563 hasConcept C191897082 @default.
- W2610239563 hasConcept C192562407 @default.
- W2610239563 hasConcept C25989453 @default.
- W2610239563 hasConcept C2776544680 @default.
- W2610239563 hasConcept C33923547 @default.
- W2610239563 hasConcept C6557445 @default.
- W2610239563 hasConcept C86803240 @default.
- W2610239563 hasConceptScore W2610239563C134121241 @default.
- W2610239563 hasConceptScore W2610239563C137580998 @default.
- W2610239563 hasConceptScore W2610239563C137660486 @default.
- W2610239563 hasConceptScore W2610239563C1549246 @default.
- W2610239563 hasConceptScore W2610239563C168741863 @default.
- W2610239563 hasConceptScore W2610239563C191897082 @default.
- W2610239563 hasConceptScore W2610239563C192562407 @default.
- W2610239563 hasConceptScore W2610239563C25989453 @default.
- W2610239563 hasConceptScore W2610239563C2776544680 @default.
- W2610239563 hasConceptScore W2610239563C33923547 @default.
- W2610239563 hasConceptScore W2610239563C6557445 @default.
- W2610239563 hasConceptScore W2610239563C86803240 @default.
- W2610239563 hasFunder F4320314928 @default.
- W2610239563 hasIssue "4" @default.
- W2610239563 hasLocation W26102395631 @default.
- W2610239563 hasOpenAccess W2610239563 @default.
- W2610239563 hasPrimaryLocation W26102395631 @default.
- W2610239563 hasRelatedWork W1964538194 @default.
- W2610239563 hasRelatedWork W2016150941 @default.
- W2610239563 hasRelatedWork W2046550984 @default.
- W2610239563 hasRelatedWork W2161881124 @default.
- W2610239563 hasRelatedWork W2218127129 @default.
- W2610239563 hasRelatedWork W2360471910 @default.
- W2610239563 hasRelatedWork W2415170322 @default.
- W2610239563 hasRelatedWork W2996115036 @default.
- W2610239563 hasRelatedWork W3080397319 @default.
- W2610239563 hasRelatedWork W3096013024 @default.
- W2610239563 hasVolume "109" @default.
- W2610239563 isParatext "false" @default.
- W2610239563 isRetracted "false" @default.
- W2610239563 magId "2610239563" @default.
- W2610239563 workType "article" @default.