Matches in SemOpenAlex for { <https://semopenalex.org/work/W2610338502> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2610338502 abstract "Gaussian scale mixture priors are frequently employed in Bayesian analysis of high-dimensional models, and a theoretical literature exists showing optimal risk properties of several members of this family in $p gg n$ settings when the truth is sparse. However, while implementations of frequentist methods such as the Lasso can scale to dimension in the hundreds of thousands, corresponding Bayesian methods that use MCMC for computation are often limited to problems at least an order of magnitude smaller. This is in large part due to convergence toward unity of the spectral gap of the associated Markov kernel as the dimension grows. Here we propose an MCMC algorithm for computation in these models that combines blocked Gibbs, Metropolis-Hastings, and slice sampling. Our algorithm has computational cost per step comparable to the best existing alternatives, but superior convergence properties, giving effective sample sizes of 50 to 100 fold larger for identical computation time. Moreover, the convergence rate of our algorithm deteriorates much more slowly than alternatives as the dimension grows. We illustrate the scalability of the algorithm in simulations with up to 20,000 predictors." @default.
- W2610338502 created "2017-05-12" @default.
- W2610338502 creator A5029579758 @default.
- W2610338502 creator A5034687178 @default.
- W2610338502 date "2017-05-02" @default.
- W2610338502 modified "2023-09-27" @default.
- W2610338502 title "Scalable MCMC for Bayes Shrinkage Priors" @default.
- W2610338502 hasPublicationYear "2017" @default.
- W2610338502 type Work @default.
- W2610338502 sameAs 2610338502 @default.
- W2610338502 citedByCount "7" @default.
- W2610338502 countsByYear W26103385022017 @default.
- W2610338502 countsByYear W26103385022018 @default.
- W2610338502 countsByYear W26103385022019 @default.
- W2610338502 crossrefType "posted-content" @default.
- W2610338502 hasAuthorship W2610338502A5029579758 @default.
- W2610338502 hasAuthorship W2610338502A5034687178 @default.
- W2610338502 hasConcept C107673813 @default.
- W2610338502 hasConcept C111350023 @default.
- W2610338502 hasConcept C11413529 @default.
- W2610338502 hasConcept C126255220 @default.
- W2610338502 hasConcept C127162648 @default.
- W2610338502 hasConcept C136764020 @default.
- W2610338502 hasConcept C154945302 @default.
- W2610338502 hasConcept C158424031 @default.
- W2610338502 hasConcept C160234255 @default.
- W2610338502 hasConcept C162324750 @default.
- W2610338502 hasConcept C162376815 @default.
- W2610338502 hasConcept C177769412 @default.
- W2610338502 hasConcept C207201462 @default.
- W2610338502 hasConcept C2777303404 @default.
- W2610338502 hasConcept C31258907 @default.
- W2610338502 hasConcept C33923547 @default.
- W2610338502 hasConcept C37616216 @default.
- W2610338502 hasConcept C41008148 @default.
- W2610338502 hasConcept C45374587 @default.
- W2610338502 hasConcept C48044578 @default.
- W2610338502 hasConcept C50522688 @default.
- W2610338502 hasConcept C57869625 @default.
- W2610338502 hasConcept C77088390 @default.
- W2610338502 hasConceptScore W2610338502C107673813 @default.
- W2610338502 hasConceptScore W2610338502C111350023 @default.
- W2610338502 hasConceptScore W2610338502C11413529 @default.
- W2610338502 hasConceptScore W2610338502C126255220 @default.
- W2610338502 hasConceptScore W2610338502C127162648 @default.
- W2610338502 hasConceptScore W2610338502C136764020 @default.
- W2610338502 hasConceptScore W2610338502C154945302 @default.
- W2610338502 hasConceptScore W2610338502C158424031 @default.
- W2610338502 hasConceptScore W2610338502C160234255 @default.
- W2610338502 hasConceptScore W2610338502C162324750 @default.
- W2610338502 hasConceptScore W2610338502C162376815 @default.
- W2610338502 hasConceptScore W2610338502C177769412 @default.
- W2610338502 hasConceptScore W2610338502C207201462 @default.
- W2610338502 hasConceptScore W2610338502C2777303404 @default.
- W2610338502 hasConceptScore W2610338502C31258907 @default.
- W2610338502 hasConceptScore W2610338502C33923547 @default.
- W2610338502 hasConceptScore W2610338502C37616216 @default.
- W2610338502 hasConceptScore W2610338502C41008148 @default.
- W2610338502 hasConceptScore W2610338502C45374587 @default.
- W2610338502 hasConceptScore W2610338502C48044578 @default.
- W2610338502 hasConceptScore W2610338502C50522688 @default.
- W2610338502 hasConceptScore W2610338502C57869625 @default.
- W2610338502 hasConceptScore W2610338502C77088390 @default.
- W2610338502 hasLocation W26103385021 @default.
- W2610338502 hasOpenAccess W2610338502 @default.
- W2610338502 hasPrimaryLocation W26103385021 @default.
- W2610338502 hasRelatedWork W1966411627 @default.
- W2610338502 hasRelatedWork W2040053636 @default.
- W2610338502 hasRelatedWork W2114169935 @default.
- W2610338502 hasRelatedWork W2144673827 @default.
- W2610338502 hasRelatedWork W2234158106 @default.
- W2610338502 hasRelatedWork W2411729332 @default.
- W2610338502 hasRelatedWork W2709427288 @default.
- W2610338502 hasRelatedWork W2896812011 @default.
- W2610338502 hasRelatedWork W2899349102 @default.
- W2610338502 hasRelatedWork W2940715532 @default.
- W2610338502 hasRelatedWork W2947737409 @default.
- W2610338502 hasRelatedWork W2951392481 @default.
- W2610338502 hasRelatedWork W2953240917 @default.
- W2610338502 hasRelatedWork W2966774543 @default.
- W2610338502 hasRelatedWork W3004592910 @default.
- W2610338502 hasRelatedWork W3038027118 @default.
- W2610338502 hasRelatedWork W3093571331 @default.
- W2610338502 hasRelatedWork W3112357093 @default.
- W2610338502 hasRelatedWork W3175946548 @default.
- W2610338502 hasRelatedWork W3208952487 @default.
- W2610338502 isParatext "false" @default.
- W2610338502 isRetracted "false" @default.
- W2610338502 magId "2610338502" @default.
- W2610338502 workType "article" @default.