Matches in SemOpenAlex for { <https://semopenalex.org/work/W2610372241> ?p ?o ?g. }
- W2610372241 endingPage "506" @default.
- W2610372241 startingPage "473" @default.
- W2610372241 abstract "At this point in the book, we have learned several strategies for computing rate constants. Whether we look back to collision theory, transition state theory, RRKM theory, reactive flux, Kramers theory, Grote-Hynes theory, etc., the velocity at the barrier top, in some guise, was always a part of the final rate expression. The theories in this chapter are completely different. Trajectories from an overdamped (diffusion) process are continuous, but not differentiable, so there are no well-defined velocities. For irreversible phenomena like nucleation, we cannot even use spectral theories. Therefore we must start from entirely different assumptions in deriving the rate. This chapter outlines two general approaches: mean first passage times (MFPTs) and expressions based on committors (splitting probabilities). These closely related approaches yield a flux-over-population rate Farkas (1927) [1] from the steady-state population density with “rescue and replace” boundary conditions. These boundary conditions create a non-equilibrium steady-state current leading from the source (the reactant basin) to the sink (the product state). A similar construct was used in the discussions of classical nucleation theory (Chapter 14) and Kramers theory (Chapter 16). The steady-state rescue and replace construct at first seems to be rather artificial, but when the boundary conditions are imposed appropriately it has a strong theoretical foundation ( vide infra )." @default.
- W2610372241 created "2017-05-12" @default.
- W2610372241 creator A5003451698 @default.
- W2610372241 date "2017-01-01" @default.
- W2610372241 modified "2023-09-25" @default.
- W2610372241 title "Diffusion over barriers" @default.
- W2610372241 cites W1800651854 @default.
- W2610372241 cites W1905703947 @default.
- W2610372241 cites W1967383799 @default.
- W2610372241 cites W1967722756 @default.
- W2610372241 cites W1970440715 @default.
- W2610372241 cites W1972463090 @default.
- W2610372241 cites W1974464394 @default.
- W2610372241 cites W1976660933 @default.
- W2610372241 cites W1976998887 @default.
- W2610372241 cites W1977875643 @default.
- W2610372241 cites W1979018519 @default.
- W2610372241 cites W1979070806 @default.
- W2610372241 cites W1979623351 @default.
- W2610372241 cites W1990009771 @default.
- W2610372241 cites W1991240354 @default.
- W2610372241 cites W1994158181 @default.
- W2610372241 cites W1997001544 @default.
- W2610372241 cites W1998404217 @default.
- W2610372241 cites W2002658200 @default.
- W2610372241 cites W2005308357 @default.
- W2610372241 cites W2009645927 @default.
- W2610372241 cites W2012901551 @default.
- W2610372241 cites W2014852739 @default.
- W2610372241 cites W2017188500 @default.
- W2610372241 cites W2020947162 @default.
- W2610372241 cites W2022239151 @default.
- W2610372241 cites W2025899185 @default.
- W2610372241 cites W2028660585 @default.
- W2610372241 cites W2029746711 @default.
- W2610372241 cites W2031843459 @default.
- W2610372241 cites W2033119225 @default.
- W2610372241 cites W2034588787 @default.
- W2610372241 cites W2035437860 @default.
- W2610372241 cites W2044359900 @default.
- W2610372241 cites W2046286471 @default.
- W2610372241 cites W2047137396 @default.
- W2610372241 cites W2049738344 @default.
- W2610372241 cites W2053291263 @default.
- W2610372241 cites W2055484248 @default.
- W2610372241 cites W2057121861 @default.
- W2610372241 cites W2058341100 @default.
- W2610372241 cites W2060646070 @default.
- W2610372241 cites W2062338207 @default.
- W2610372241 cites W2069321169 @default.
- W2610372241 cites W2076824742 @default.
- W2610372241 cites W2079415787 @default.
- W2610372241 cites W2083544350 @default.
- W2610372241 cites W2085694724 @default.
- W2610372241 cites W2088156633 @default.
- W2610372241 cites W2092144432 @default.
- W2610372241 cites W2092160627 @default.
- W2610372241 cites W2093018891 @default.
- W2610372241 cites W2095400132 @default.
- W2610372241 cites W2095921114 @default.
- W2610372241 cites W2099490136 @default.
- W2610372241 cites W2103607079 @default.
- W2610372241 cites W2104395386 @default.
- W2610372241 cites W2105903067 @default.
- W2610372241 cites W2110730023 @default.
- W2610372241 cites W2122638517 @default.
- W2610372241 cites W2129594980 @default.
- W2610372241 cites W2139418150 @default.
- W2610372241 cites W2143171629 @default.
- W2610372241 cites W2158323088 @default.
- W2610372241 cites W2163845030 @default.
- W2610372241 cites W2168175927 @default.
- W2610372241 cites W2319730996 @default.
- W2610372241 cites W2321507823 @default.
- W2610372241 cites W2324298021 @default.
- W2610372241 cites W2330733193 @default.
- W2610372241 cites W2331547857 @default.
- W2610372241 cites W2334386896 @default.
- W2610372241 cites W2341303730 @default.
- W2610372241 cites W2353634221 @default.
- W2610372241 cites W2611901592 @default.
- W2610372241 cites W3100391302 @default.
- W2610372241 cites W3102544005 @default.
- W2610372241 cites W3173126727 @default.
- W2610372241 doi "https://doi.org/10.1016/b978-0-44-456349-1.00018-0" @default.
- W2610372241 hasPublicationYear "2017" @default.
- W2610372241 type Work @default.
- W2610372241 sameAs 2610372241 @default.
- W2610372241 citedByCount "3" @default.
- W2610372241 countsByYear W26103722412021 @default.
- W2610372241 countsByYear W26103722412022 @default.
- W2610372241 crossrefType "book-chapter" @default.
- W2610372241 hasAuthorship W2610372241A5003451698 @default.
- W2610372241 hasConcept C121332964 @default.
- W2610372241 hasConcept C144133560 @default.
- W2610372241 hasConcept C192562407 @default.
- W2610372241 hasConcept C69357855 @default.
- W2610372241 hasConcept C97355855 @default.