Matches in SemOpenAlex for { <https://semopenalex.org/work/W2610450349> ?p ?o ?g. }
- W2610450349 endingPage "494" @default.
- W2610450349 startingPage "481" @default.
- W2610450349 abstract "In this article, a parametric model for health condition monitoring of wind turbines is developed. The study is based on the assumption that a wind turbine’s health condition can be modeled through three features: rotor speed, gearbox temperature and generator winding temperature. At first, three neural network models are created to simulate normal behavior of each feature. Deviation signals are then defined and calculated as accumulated time-series of differences between neural network predictions and actual measurements. These cumulative signals carry health condition–related information. Next, through nonlinear regression technique, the signals are used to produce individual models for considered features, which mathematically have the form of proportional hazard models. Finally, they are combined to construct an overall parametric health condition model which partially represents health condition of the wind turbine. In addition, a dynamic threshold for the model is developed to facilitate and add more insight in performance monitoring aspect. The health condition monitoring of wind turbine model has capability of evaluating real-time and overall health condition of a wind turbine which can also be used with regard to maintenance in electricity generation in electric power systems. The model also has flexibility to overcome current challenges such as scalability and adaptability. The model is verified in illustrating changes in real-time and overall health condition with respect to considered anomalies by testing through actual and artificial data." @default.
- W2610450349 created "2017-05-12" @default.
- W2610450349 creator A5010659057 @default.
- W2610450349 creator A5024869622 @default.
- W2610450349 creator A5063119651 @default.
- W2610450349 creator A5079498892 @default.
- W2610450349 date "2017-05-04" @default.
- W2610450349 modified "2023-10-03" @default.
- W2610450349 title "A health condition model for wind turbine monitoring through neural networks and proportional hazard models" @default.
- W2610450349 cites W12008336 @default.
- W2610450349 cites W1527152867 @default.
- W2610450349 cites W1605077306 @default.
- W2610450349 cites W1893072774 @default.
- W2610450349 cites W1985255373 @default.
- W2610450349 cites W1997186379 @default.
- W2610450349 cites W2010619950 @default.
- W2610450349 cites W2023692298 @default.
- W2610450349 cites W2033708313 @default.
- W2610450349 cites W2037411704 @default.
- W2610450349 cites W2039442724 @default.
- W2610450349 cites W2040405051 @default.
- W2610450349 cites W2041727086 @default.
- W2610450349 cites W2043779128 @default.
- W2610450349 cites W2044963328 @default.
- W2610450349 cites W2051812123 @default.
- W2610450349 cites W2060512336 @default.
- W2610450349 cites W2069142309 @default.
- W2610450349 cites W2076863095 @default.
- W2610450349 cites W2078112329 @default.
- W2610450349 cites W2083755244 @default.
- W2610450349 cites W2085019962 @default.
- W2610450349 cites W2097889655 @default.
- W2610450349 cites W2101170172 @default.
- W2610450349 cites W2113064776 @default.
- W2610450349 cites W2120674393 @default.
- W2610450349 cites W2151810463 @default.
- W2610450349 cites W2154660294 @default.
- W2610450349 cites W2164594722 @default.
- W2610450349 cites W2171396279 @default.
- W2610450349 cites W2196381116 @default.
- W2610450349 cites W2235443492 @default.
- W2610450349 cites W2255738116 @default.
- W2610450349 cites W2326041979 @default.
- W2610450349 cites W3106496229 @default.
- W2610450349 cites W4293241248 @default.
- W2610450349 doi "https://doi.org/10.1177/1748006x17707902" @default.
- W2610450349 hasPublicationYear "2017" @default.
- W2610450349 type Work @default.
- W2610450349 sameAs 2610450349 @default.
- W2610450349 citedByCount "9" @default.
- W2610450349 countsByYear W26104503492018 @default.
- W2610450349 countsByYear W26104503492019 @default.
- W2610450349 countsByYear W26104503492020 @default.
- W2610450349 countsByYear W26104503492021 @default.
- W2610450349 countsByYear W26104503492022 @default.
- W2610450349 countsByYear W26104503492023 @default.
- W2610450349 crossrefType "journal-article" @default.
- W2610450349 hasAuthorship W2610450349A5010659057 @default.
- W2610450349 hasAuthorship W2610450349A5024869622 @default.
- W2610450349 hasAuthorship W2610450349A5063119651 @default.
- W2610450349 hasAuthorship W2610450349A5079498892 @default.
- W2610450349 hasConcept C105795698 @default.
- W2610450349 hasConcept C117251300 @default.
- W2610450349 hasConcept C119599485 @default.
- W2610450349 hasConcept C121332964 @default.
- W2610450349 hasConcept C127413603 @default.
- W2610450349 hasConcept C153294291 @default.
- W2610450349 hasConcept C154945302 @default.
- W2610450349 hasConcept C161067210 @default.
- W2610450349 hasConcept C178790620 @default.
- W2610450349 hasConcept C185592680 @default.
- W2610450349 hasConcept C2775846686 @default.
- W2610450349 hasConcept C2775924081 @default.
- W2610450349 hasConcept C2778449969 @default.
- W2610450349 hasConcept C2780598303 @default.
- W2610450349 hasConcept C33923547 @default.
- W2610450349 hasConcept C41008148 @default.
- W2610450349 hasConcept C47446073 @default.
- W2610450349 hasConcept C49261128 @default.
- W2610450349 hasConcept C50644808 @default.
- W2610450349 hasConcept C78519656 @default.
- W2610450349 hasConcept C78600449 @default.
- W2610450349 hasConceptScore W2610450349C105795698 @default.
- W2610450349 hasConceptScore W2610450349C117251300 @default.
- W2610450349 hasConceptScore W2610450349C119599485 @default.
- W2610450349 hasConceptScore W2610450349C121332964 @default.
- W2610450349 hasConceptScore W2610450349C127413603 @default.
- W2610450349 hasConceptScore W2610450349C153294291 @default.
- W2610450349 hasConceptScore W2610450349C154945302 @default.
- W2610450349 hasConceptScore W2610450349C161067210 @default.
- W2610450349 hasConceptScore W2610450349C178790620 @default.
- W2610450349 hasConceptScore W2610450349C185592680 @default.
- W2610450349 hasConceptScore W2610450349C2775846686 @default.
- W2610450349 hasConceptScore W2610450349C2775924081 @default.
- W2610450349 hasConceptScore W2610450349C2778449969 @default.
- W2610450349 hasConceptScore W2610450349C2780598303 @default.
- W2610450349 hasConceptScore W2610450349C33923547 @default.
- W2610450349 hasConceptScore W2610450349C41008148 @default.