Matches in SemOpenAlex for { <https://semopenalex.org/work/W2610495855> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2610495855 endingPage "6" @default.
- W2610495855 startingPage "6" @default.
- W2610495855 abstract "The present study investigates the potential of the implementation of machine learning techniques in optimized multi storey reinforced concrete frames. The variables that are taken into account in the objective function of the optimization problem are the following: the frame type (frame bay length optimality) and dimensioning of the cross sections. The objective function has the goal of attaining a minimum cost design based on market data, after a structural analysis of the frames. A number of optimized examples with widely encountered cases of total lengths of frames and with various loadings are presented. Modeling is based on Eurocode 2. Optimization takes place with the use of evolutionary algorithms. The optimized results are subjected to predictive modeling based on neural networks. The objective of the study is to create predictive models with the aim of minimizing the usage of scarce resources." @default.
- W2610495855 created "2017-05-12" @default.
- W2610495855 creator A5039636897 @default.
- W2610495855 creator A5043659527 @default.
- W2610495855 date "2017-05-03" @default.
- W2610495855 modified "2023-10-18" @default.
- W2610495855 title "Machine Learning and Optimality in Multi Storey Reinforced Concrete Frames" @default.
- W2610495855 cites W2005924543 @default.
- W2610495855 cites W2023357432 @default.
- W2610495855 cites W2029994349 @default.
- W2610495855 cites W2072931603 @default.
- W2610495855 cites W2164845385 @default.
- W2610495855 cites W3107393974 @default.
- W2610495855 cites W3142060540 @default.
- W2610495855 doi "https://doi.org/10.3390/infrastructures2020006" @default.
- W2610495855 hasPublicationYear "2017" @default.
- W2610495855 type Work @default.
- W2610495855 sameAs 2610495855 @default.
- W2610495855 citedByCount "5" @default.
- W2610495855 countsByYear W26104958552018 @default.
- W2610495855 countsByYear W26104958552019 @default.
- W2610495855 countsByYear W26104958552021 @default.
- W2610495855 countsByYear W26104958552023 @default.
- W2610495855 crossrefType "journal-article" @default.
- W2610495855 hasAuthorship W2610495855A5039636897 @default.
- W2610495855 hasAuthorship W2610495855A5043659527 @default.
- W2610495855 hasBestOaLocation W26104958551 @default.
- W2610495855 hasConcept C119857082 @default.
- W2610495855 hasConcept C126042441 @default.
- W2610495855 hasConcept C126255220 @default.
- W2610495855 hasConcept C127413603 @default.
- W2610495855 hasConcept C14036430 @default.
- W2610495855 hasConcept C146978453 @default.
- W2610495855 hasConcept C154945302 @default.
- W2610495855 hasConcept C181781793 @default.
- W2610495855 hasConcept C33923547 @default.
- W2610495855 hasConcept C41008148 @default.
- W2610495855 hasConcept C50644808 @default.
- W2610495855 hasConcept C66938386 @default.
- W2610495855 hasConcept C76155785 @default.
- W2610495855 hasConcept C78458016 @default.
- W2610495855 hasConcept C86803240 @default.
- W2610495855 hasConcept C89714869 @default.
- W2610495855 hasConceptScore W2610495855C119857082 @default.
- W2610495855 hasConceptScore W2610495855C126042441 @default.
- W2610495855 hasConceptScore W2610495855C126255220 @default.
- W2610495855 hasConceptScore W2610495855C127413603 @default.
- W2610495855 hasConceptScore W2610495855C14036430 @default.
- W2610495855 hasConceptScore W2610495855C146978453 @default.
- W2610495855 hasConceptScore W2610495855C154945302 @default.
- W2610495855 hasConceptScore W2610495855C181781793 @default.
- W2610495855 hasConceptScore W2610495855C33923547 @default.
- W2610495855 hasConceptScore W2610495855C41008148 @default.
- W2610495855 hasConceptScore W2610495855C50644808 @default.
- W2610495855 hasConceptScore W2610495855C66938386 @default.
- W2610495855 hasConceptScore W2610495855C76155785 @default.
- W2610495855 hasConceptScore W2610495855C78458016 @default.
- W2610495855 hasConceptScore W2610495855C86803240 @default.
- W2610495855 hasConceptScore W2610495855C89714869 @default.
- W2610495855 hasIssue "2" @default.
- W2610495855 hasLocation W26104958551 @default.
- W2610495855 hasOpenAccess W2610495855 @default.
- W2610495855 hasPrimaryLocation W26104958551 @default.
- W2610495855 hasRelatedWork W2187543877 @default.
- W2610495855 hasRelatedWork W2346376507 @default.
- W2610495855 hasRelatedWork W2593932733 @default.
- W2610495855 hasRelatedWork W2602497709 @default.
- W2610495855 hasRelatedWork W27183249 @default.
- W2610495855 hasRelatedWork W2899127426 @default.
- W2610495855 hasRelatedWork W2961085424 @default.
- W2610495855 hasRelatedWork W3131524127 @default.
- W2610495855 hasRelatedWork W4306674287 @default.
- W2610495855 hasRelatedWork W562288599 @default.
- W2610495855 hasVolume "2" @default.
- W2610495855 isParatext "false" @default.
- W2610495855 isRetracted "false" @default.
- W2610495855 magId "2610495855" @default.
- W2610495855 workType "article" @default.