Matches in SemOpenAlex for { <https://semopenalex.org/work/W2610580082> ?p ?o ?g. }
- W2610580082 abstract "Many modern big data applications feature large scale in both numbers of responses and predictors. Better statistical efficiency and scientific insights can be enabled by understanding the large-scale response-predictor association network structures via layers of sparse latent factors ranked by importance. Yet sparsity and orthogonality have been two largely incompatible goals. To accommodate both features, in this paper we suggest the method of sparse orthogonal factor regression (SOFAR) via the sparse singular value decomposition with orthogonality constrained optimization to learn the underlying association networks, with broad applications to both unsupervised and supervised learning tasks such as biclustering with sparse singular value decomposition, sparse principal component analysis, sparse factor analysis, and spare vector autoregression analysis. Exploiting the framework of convexity-assisted nonconvex optimization, we derive nonasymptotic error bounds for the suggested procedure characterizing the theoretical advantages. The statistical guarantees are powered by an efficient SOFAR algorithm with convergence property. Both computational and theoretical advantages of our procedure are demonstrated with several simulation and real data examples." @default.
- W2610580082 created "2017-05-12" @default.
- W2610580082 creator A5034015361 @default.
- W2610580082 creator A5050309115 @default.
- W2610580082 creator A5069014880 @default.
- W2610580082 creator A5078988597 @default.
- W2610580082 creator A5079340751 @default.
- W2610580082 date "2017-04-26" @default.
- W2610580082 modified "2023-10-16" @default.
- W2610580082 title "SOFAR: large-scale association network learning" @default.
- W2610580082 cites W1540764732 @default.
- W2610580082 cites W1818491521 @default.
- W2610580082 cites W1966315074 @default.
- W2610580082 cites W1970964234 @default.
- W2610580082 cites W1975900269 @default.
- W2610580082 cites W1981947935 @default.
- W2610580082 cites W1992442826 @default.
- W2610580082 cites W1992918752 @default.
- W2610580082 cites W2000023271 @default.
- W2610580082 cites W2014165366 @default.
- W2610580082 cites W2020925091 @default.
- W2610580082 cites W2025983204 @default.
- W2610580082 cites W2034133761 @default.
- W2610580082 cites W2036328877 @default.
- W2610580082 cites W2044809283 @default.
- W2610580082 cites W2045512849 @default.
- W2610580082 cites W2047465705 @default.
- W2610580082 cites W2054121219 @default.
- W2610580082 cites W2057122525 @default.
- W2610580082 cites W2057990756 @default.
- W2610580082 cites W2064980127 @default.
- W2610580082 cites W2070173743 @default.
- W2610580082 cites W2073681337 @default.
- W2610580082 cites W2074682976 @default.
- W2610580082 cites W2079563517 @default.
- W2610580082 cites W2081297271 @default.
- W2610580082 cites W2082315702 @default.
- W2610580082 cites W2088911135 @default.
- W2610580082 cites W2090257125 @default.
- W2610580082 cites W2091352038 @default.
- W2610580082 cites W2093513340 @default.
- W2610580082 cites W2095129237 @default.
- W2610580082 cites W2097714737 @default.
- W2610580082 cites W2098290597 @default.
- W2610580082 cites W2101593431 @default.
- W2610580082 cites W2114136380 @default.
- W2610580082 cites W2131230871 @default.
- W2610580082 cites W2131848047 @default.
- W2610580082 cites W2132471283 @default.
- W2610580082 cites W2133073622 @default.
- W2610580082 cites W2135046866 @default.
- W2610580082 cites W2136623592 @default.
- W2610580082 cites W2141366416 @default.
- W2610580082 cites W2148289138 @default.
- W2610580082 cites W2159706540 @default.
- W2610580082 cites W2160304423 @default.
- W2610580082 cites W2164278908 @default.
- W2610580082 cites W2170202041 @default.
- W2610580082 cites W2487448336 @default.
- W2610580082 cites W2593168166 @default.
- W2610580082 cites W2798909945 @default.
- W2610580082 cites W3022446978 @default.
- W2610580082 cites W3101498811 @default.
- W2610580082 cites W3103211861 @default.
- W2610580082 cites W3103298265 @default.
- W2610580082 cites W3103324688 @default.
- W2610580082 cites W3103645229 @default.
- W2610580082 cites W3105322001 @default.
- W2610580082 cites W3123841035 @default.
- W2610580082 doi "https://doi.org/10.48550/arxiv.1704.08349" @default.
- W2610580082 hasPublicationYear "2017" @default.
- W2610580082 type Work @default.
- W2610580082 sameAs 2610580082 @default.
- W2610580082 citedByCount "0" @default.
- W2610580082 crossrefType "posted-content" @default.
- W2610580082 hasAuthorship W2610580082A5034015361 @default.
- W2610580082 hasAuthorship W2610580082A5050309115 @default.
- W2610580082 hasAuthorship W2610580082A5069014880 @default.
- W2610580082 hasAuthorship W2610580082A5078988597 @default.
- W2610580082 hasAuthorship W2610580082A5079340751 @default.
- W2610580082 hasBestOaLocation W26105800821 @default.
- W2610580082 hasConcept C119857082 @default.
- W2610580082 hasConcept C121332964 @default.
- W2610580082 hasConcept C124101348 @default.
- W2610580082 hasConcept C126255220 @default.
- W2610580082 hasConcept C138885662 @default.
- W2610580082 hasConcept C154945302 @default.
- W2610580082 hasConcept C17137986 @default.
- W2610580082 hasConcept C22789450 @default.
- W2610580082 hasConcept C2524010 @default.
- W2610580082 hasConcept C27438332 @default.
- W2610580082 hasConcept C2776401178 @default.
- W2610580082 hasConcept C2778755073 @default.
- W2610580082 hasConcept C33923547 @default.
- W2610580082 hasConcept C41008148 @default.
- W2610580082 hasConcept C41895202 @default.
- W2610580082 hasConcept C62520636 @default.
- W2610580082 hasConceptScore W2610580082C119857082 @default.
- W2610580082 hasConceptScore W2610580082C121332964 @default.
- W2610580082 hasConceptScore W2610580082C124101348 @default.