Matches in SemOpenAlex for { <https://semopenalex.org/work/W2610942008> ?p ?o ?g. }
- W2610942008 endingPage "662" @default.
- W2610942008 startingPage "621" @default.
- W2610942008 abstract "Batteries for hybrid electric vehicle (HEV) applications should be able to accept high charging currents during regenerative braking, be able to operate from partial state of charge and deliver high discharge currents during vehicle acceleration. To make lead–acid batteries suitable for application in the HEV duty, i.e., to improve the charge acceptance and the electroconductivity of the negative active mass (NAM), carbon materials are added to NAM at loading levels between 0.2 and 0.5 wt%. With the introduction of carbon additives to NAM, two electrical systems operate in the NAM: a capacitive system comprising charging and discharging of the electric double layer, mostly on the carbon surface; this system operates on cycling with short 5 s pulses; an electrochemical system comprising electrochemical and chemical reactions of Pb oxidation to PbSO4 and the latter's subsequent reduction back to Pb; this system operates on cycling with longer charge and discharge current pulses (30 or 50 s). It has been established that the reaction of reduction of the lead ions proceeds via “a parallel mechanism” on both the lead and carbon surfaces. When cycled with current pulses of up to 5–8 s, the electrode behaves like a capacitor, i.e., it is rapidly charged and discharged, and the cells complete hundreds of thousands cycles in the high-rate partial-state-of-charge (HRPSoC) duty. When the charge pulses are longer than 30 s, the cells complete only several thousand HRPSoC cycles, because the electrochemical system is the predominating one (with lower reversibility of the processes involved). The capacitive system has low ampere hour capacity contributes only 0.20% to the Ah capacity of the cell within one microcycle. The electrochemical system, on the other hand, involves a major part of the lead volume in the processes during operation of the negative electrode and hence has high capacity. Carbon added to the negative active material changes the structure and the pore system of the NAM and thus affects the reversibility of the processes involved in the electrochemical system, eventually improving the cycle life of the cell. When the carbon additive reduces the median pore radius of NAM to micron sizes, the solution filling the pores may get alkalized under the action of electric current flowing through the electrode, which leads to formation of alpha-PbO and hence the cell cycle life is shortened. The cycleability is also affected by the lignosulfonate in the expander composition, especially when combined with carbon additives of 115–185 nm particle size. In the latter case, the cycle life improves substantially. In an attempt to improve the specific energy and thus ensure higher power density of the lead–acid battery, hybrid lead/carbon supercapacitor batteries were developed, where part of the negative electrode was replaced with a porous carbon electrode. The charge acceptance of the battery was improved but its capacity was declined significantly. The presence of residual (and trace) elements in the carbon additives may lower the overvoltage of the hydrogen reaction on the carbon surface and thus increase the rate of hydrogen evolution on the lead–carbon electrode. In an attempt to mitigate these effects, Ga2O3 and Bi2O3 additives were introduced in the NAM, which reduce the rate of hydrogen evolution on the lead and carbon surfaces. Some rare earth metal oxides, too, have similar effect (e.g., Gd2O3, La2O, Dy2O3, Nd2O3, and Sn2O3). Another problem with lead–carbon electrodes is that they get progressively sulfated on cycling in the HRPSoC duty. It has been established that polyaspartic acid ([C4H4NO3Na]x) and benzyl benzoate (99%) (an aromatic ester compound of carboxylic acid) inhibit the processes of lead sulfate recrystallization and hence retard the sulfation of the lead–carbon electrodes in lead–acid batteries. As a result of the above developments of the lead–carbon electrode technology, the latter has been widely introduced in the battery practice of late." @default.
- W2610942008 created "2017-05-12" @default.
- W2610942008 creator A5076570568 @default.
- W2610942008 date "2017-01-01" @default.
- W2610942008 modified "2023-10-17" @default.
- W2610942008 title "Lead–Carbon Electrodes" @default.
- W2610942008 cites W1972855884 @default.
- W2610942008 cites W1980891662 @default.
- W2610942008 cites W1987960996 @default.
- W2610942008 cites W1991022155 @default.
- W2610942008 cites W1995735616 @default.
- W2610942008 cites W1998570765 @default.
- W2610942008 cites W2004724719 @default.
- W2610942008 cites W2011713142 @default.
- W2610942008 cites W2012490720 @default.
- W2610942008 cites W2014250861 @default.
- W2610942008 cites W2023109802 @default.
- W2610942008 cites W2027159666 @default.
- W2610942008 cites W2037878829 @default.
- W2610942008 cites W2046355813 @default.
- W2610942008 cites W2046609141 @default.
- W2610942008 cites W2063726275 @default.
- W2610942008 cites W2065132586 @default.
- W2610942008 cites W2068135411 @default.
- W2610942008 cites W2085494585 @default.
- W2610942008 cites W2087781958 @default.
- W2610942008 cites W2091159943 @default.
- W2610942008 cites W2094526161 @default.
- W2610942008 cites W2098559483 @default.
- W2610942008 cites W2103310869 @default.
- W2610942008 cites W2109553963 @default.
- W2610942008 cites W2129303257 @default.
- W2610942008 cites W2220921340 @default.
- W2610942008 cites W4252264609 @default.
- W2610942008 doi "https://doi.org/10.1016/b978-0-444-59552-2.00015-8" @default.
- W2610942008 hasPublicationYear "2017" @default.
- W2610942008 type Work @default.
- W2610942008 sameAs 2610942008 @default.
- W2610942008 citedByCount "3" @default.
- W2610942008 countsByYear W26109420082021 @default.
- W2610942008 countsByYear W26109420082022 @default.
- W2610942008 crossrefType "book-chapter" @default.
- W2610942008 hasAuthorship W2610942008A5076570568 @default.
- W2610942008 hasConcept C104779481 @default.
- W2610942008 hasConcept C119599485 @default.
- W2610942008 hasConcept C121332964 @default.
- W2610942008 hasConcept C127413603 @default.
- W2610942008 hasConcept C140205800 @default.
- W2610942008 hasConcept C145148216 @default.
- W2610942008 hasConcept C147789679 @default.
- W2610942008 hasConcept C159985019 @default.
- W2610942008 hasConcept C163258240 @default.
- W2610942008 hasConcept C165801399 @default.
- W2610942008 hasConcept C17525397 @default.
- W2610942008 hasConcept C178790620 @default.
- W2610942008 hasConcept C185592680 @default.
- W2610942008 hasConcept C192562407 @default.
- W2610942008 hasConcept C199822604 @default.
- W2610942008 hasConcept C206755178 @default.
- W2610942008 hasConcept C50292345 @default.
- W2610942008 hasConcept C52192207 @default.
- W2610942008 hasConcept C52859227 @default.
- W2610942008 hasConcept C555008776 @default.
- W2610942008 hasConcept C97355855 @default.
- W2610942008 hasConceptScore W2610942008C104779481 @default.
- W2610942008 hasConceptScore W2610942008C119599485 @default.
- W2610942008 hasConceptScore W2610942008C121332964 @default.
- W2610942008 hasConceptScore W2610942008C127413603 @default.
- W2610942008 hasConceptScore W2610942008C140205800 @default.
- W2610942008 hasConceptScore W2610942008C145148216 @default.
- W2610942008 hasConceptScore W2610942008C147789679 @default.
- W2610942008 hasConceptScore W2610942008C159985019 @default.
- W2610942008 hasConceptScore W2610942008C163258240 @default.
- W2610942008 hasConceptScore W2610942008C165801399 @default.
- W2610942008 hasConceptScore W2610942008C17525397 @default.
- W2610942008 hasConceptScore W2610942008C178790620 @default.
- W2610942008 hasConceptScore W2610942008C185592680 @default.
- W2610942008 hasConceptScore W2610942008C192562407 @default.
- W2610942008 hasConceptScore W2610942008C199822604 @default.
- W2610942008 hasConceptScore W2610942008C206755178 @default.
- W2610942008 hasConceptScore W2610942008C50292345 @default.
- W2610942008 hasConceptScore W2610942008C52192207 @default.
- W2610942008 hasConceptScore W2610942008C52859227 @default.
- W2610942008 hasConceptScore W2610942008C555008776 @default.
- W2610942008 hasConceptScore W2610942008C97355855 @default.
- W2610942008 hasLocation W26109420081 @default.
- W2610942008 hasOpenAccess W2610942008 @default.
- W2610942008 hasPrimaryLocation W26109420081 @default.
- W2610942008 hasRelatedWork W2027736889 @default.
- W2610942008 hasRelatedWork W2044942002 @default.
- W2610942008 hasRelatedWork W2046846083 @default.
- W2610942008 hasRelatedWork W2063405566 @default.
- W2610942008 hasRelatedWork W2145725352 @default.
- W2610942008 hasRelatedWork W2154140536 @default.
- W2610942008 hasRelatedWork W2521221281 @default.
- W2610942008 hasRelatedWork W2898754620 @default.
- W2610942008 hasRelatedWork W2899084033 @default.
- W2610942008 hasRelatedWork W2939961429 @default.