Matches in SemOpenAlex for { <https://semopenalex.org/work/W2610973834> ?p ?o ?g. }
- W2610973834 abstract "The goal of computational anatomy is to analyze and to statistically model the anatomy of organs in different subjects. Computational anatomic methods are generally based on the extraction of anatomical features or manifolds which are then statistically analyzed, often through a non-linear registration. There are nowadays a growing number of methods that can faithfully deal with the underlying biomechanical behavior of intra-subject deformations. However, it is more difficult to relate the anatomies of different subjects. In the absence of any justified physical model, diffeomorphisms provide a general mathematical framework that enforce topological consistency. Working with such infinite dimensional space raises some deep computational and mathematical problems, in particular for doing statistics. Likewise, modeling the variability of surfaces leads to rely on shape spaces that are much more complex than for curves. To cope with these, different methodological and computational frameworks have been proposed (e.g. smooth left-invariant metrics, focus on well-behaved subspaces of diffeomorphisms, modeling surfaces using courants, etc.) The goal of the Mathematical Foundations of Computational Anatomy (MFCA) workshop is to foster the interactions between the mathematical community around shapes and the MICCAI community around computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop aims at being a forum for the exchange of the theoretical ideas and a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the very successful first edition of this workshop in 2006 (see http://www.inria.fr/sophia/asclepios/events/MFCA06/), the second edition was held in New-York on September 6, in conjunction with MICCAI 2008. Contributions were solicited in Riemannian and group theoretical methods, Geometric measurements of the anatomy, Advanced statistics on deformations and shapes, Metrics for computational anatomy, Statistics of surfaces. 34 submissions were received, among which 9 were accepted to MICCAI and had to be withdrawn from the workshop. Each of the remaining 25 paper was reviewed by three members of the program committee. To guaranty a high level program, 16 papers only were selected." @default.
- W2610973834 created "2017-05-12" @default.
- W2610973834 creator A5003253553 @default.
- W2610973834 creator A5020701488 @default.
- W2610973834 date "2008-08-29" @default.
- W2610973834 modified "2023-09-23" @default.
- W2610973834 title "Proceedings of the Second International Workshop on Mathematical Foundations of Computational Anatomy (MFCA'08) - Geometrical and Statistical Methods for Modelling Biological Shape Variability" @default.
- W2610973834 cites W113369689 @default.
- W2610973834 cites W1251994293 @default.
- W2610973834 cites W1492998137 @default.
- W2610973834 cites W1493645544 @default.
- W2610973834 cites W1494041778 @default.
- W2610973834 cites W1503893179 @default.
- W2610973834 cites W1504242651 @default.
- W2610973834 cites W1508718704 @default.
- W2610973834 cites W1526933650 @default.
- W2610973834 cites W1527329021 @default.
- W2610973834 cites W1532229066 @default.
- W2610973834 cites W1536498778 @default.
- W2610973834 cites W1543220894 @default.
- W2610973834 cites W1550222568 @default.
- W2610973834 cites W1558262503 @default.
- W2610973834 cites W1569930776 @default.
- W2610973834 cites W1577528636 @default.
- W2610973834 cites W1579634341 @default.
- W2610973834 cites W1585720092 @default.
- W2610973834 cites W1596437242 @default.
- W2610973834 cites W1599434464 @default.
- W2610973834 cites W1621575568 @default.
- W2610973834 cites W163037119 @default.
- W2610973834 cites W1663973292 @default.
- W2610973834 cites W1702080576 @default.
- W2610973834 cites W1826158161 @default.
- W2610973834 cites W186585364 @default.
- W2610973834 cites W1874027545 @default.
- W2610973834 cites W1964475239 @default.
- W2610973834 cites W1969576961 @default.
- W2610973834 cites W1977775666 @default.
- W2610973834 cites W1985415289 @default.
- W2610973834 cites W1986280275 @default.
- W2610973834 cites W1991258631 @default.
- W2610973834 cites W1992244412 @default.
- W2610973834 cites W1992367773 @default.
- W2610973834 cites W1998020770 @default.
- W2610973834 cites W1999954977 @default.
- W2610973834 cites W2001666669 @default.
- W2610973834 cites W2005999035 @default.
- W2610973834 cites W2007275810 @default.
- W2610973834 cites W2014364779 @default.
- W2610973834 cites W2015151082 @default.
- W2610973834 cites W2016337909 @default.
- W2610973834 cites W2018158023 @default.
- W2610973834 cites W2022935832 @default.
- W2610973834 cites W2032882750 @default.
- W2610973834 cites W2034987376 @default.
- W2610973834 cites W2035415121 @default.
- W2610973834 cites W2035716292 @default.
- W2610973834 cites W2037417726 @default.
- W2610973834 cites W2038952578 @default.
- W2610973834 cites W2039934664 @default.
- W2610973834 cites W2041398617 @default.
- W2610973834 cites W2045145094 @default.
- W2610973834 cites W2046617499 @default.
- W2610973834 cites W2049114803 @default.
- W2610973834 cites W2049633694 @default.
- W2610973834 cites W2055742299 @default.
- W2610973834 cites W2056226026 @default.
- W2610973834 cites W2061113411 @default.
- W2610973834 cites W2064327730 @default.
- W2610973834 cites W2074745044 @default.
- W2610973834 cites W2076114154 @default.
- W2610973834 cites W2078238424 @default.
- W2610973834 cites W2080479039 @default.
- W2610973834 cites W2082484987 @default.
- W2610973834 cites W2083099567 @default.
- W2610973834 cites W2084831515 @default.
- W2610973834 cites W2087329389 @default.
- W2610973834 cites W2087900925 @default.
- W2610973834 cites W2088060544 @default.
- W2610973834 cites W2091804476 @default.
- W2610973834 cites W2095444191 @default.
- W2610973834 cites W2096115297 @default.
- W2610973834 cites W2097384311 @default.
- W2610973834 cites W2097864095 @default.
- W2610973834 cites W2098979973 @default.
- W2610973834 cites W2099530880 @default.
- W2610973834 cites W2100115174 @default.
- W2610973834 cites W2101043275 @default.
- W2610973834 cites W2104398594 @default.
- W2610973834 cites W2105622172 @default.
- W2610973834 cites W2107035130 @default.
- W2610973834 cites W2110208125 @default.
- W2610973834 cites W2110437310 @default.
- W2610973834 cites W2115245436 @default.
- W2610973834 cites W2116016979 @default.
- W2610973834 cites W2116329629 @default.
- W2610973834 cites W2118620951 @default.
- W2610973834 cites W2120383035 @default.
- W2610973834 cites W2121549990 @default.
- W2610973834 cites W2122034173 @default.