Matches in SemOpenAlex for { <https://semopenalex.org/work/W2611111541> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2611111541 endingPage "6" @default.
- W2611111541 startingPage "1" @default.
- W2611111541 abstract "Background: Rice (Oryzasativa) is one of the most widely consumed staple foods, especially in the Asian subcontinent. Traditionally, grain testers who make use of calipers and other specialized tools for measuring features of grains are employed for classifying rice grains into different varieties. However, besides size and shape, various other characteristics, such as whiteness and chalkiness, also contribute towards its taste and overall quality. Objective: Computerized classification of rice grains can help in reducing errors of manual grading and in considering more features that indicate quality. The proposed work considers few commercially available rice grains in the South-Indian region to identify new attributes for better grain classification. Methodology: Rice samples were collected from rice outlets across Karnataka. Images of the grains were captured using flat-bed scanning technique and processed to extract new features that represented chalkiness and whiteness of grains along with other morphological features such as area, perimeter, major and minor axes, etc. Machine learning algorithms were used to create classification rule. Findings: The new features extracted were found to contribute significantly towards the classification. Nine varieties of rice grains were considered for the study and the system was able to successfully classify the grains with an accuracy of 95.78% using the NB Tree and SMO classifiers. Novelty: Many studies that consider the morphological features of grains such as its area, shape etc. have already been performed. However, the shapes and sizes of the different varieties are too varied to generalize a common formula for the classification of all varieties of rice. In this paper, Fourier features are also extracted from grain images in addition to the spatial features to arrive at an improved accuracy for classification. Keywords: Fast Fourier Transform (FFT), Grain Classification, Naive Bayes Tree (NB Tree), Rice (Oryzasativa), SMO (Sequential Minimal Optimization)" @default.
- W2611111541 created "2017-05-12" @default.
- W2611111541 creator A5036347714 @default.
- W2611111541 creator A5082689167 @default.
- W2611111541 date "2017-04-01" @default.
- W2611111541 modified "2023-10-01" @default.
- W2611111541 title "Rice Grain Classification using Fourier Transform and Morphological Features" @default.
- W2611111541 cites W1998997312 @default.
- W2611111541 cites W2028781261 @default.
- W2611111541 cites W2039561437 @default.
- W2611111541 cites W2164932940 @default.
- W2611111541 doi "https://doi.org/10.17485/ijst/2017/v10i14/110468" @default.
- W2611111541 hasPublicationYear "2017" @default.
- W2611111541 type Work @default.
- W2611111541 sameAs 2611111541 @default.
- W2611111541 citedByCount "7" @default.
- W2611111541 countsByYear W26111115412019 @default.
- W2611111541 countsByYear W26111115412020 @default.
- W2611111541 countsByYear W26111115412021 @default.
- W2611111541 countsByYear W26111115412022 @default.
- W2611111541 countsByYear W26111115412023 @default.
- W2611111541 crossrefType "journal-article" @default.
- W2611111541 hasAuthorship W2611111541A5036347714 @default.
- W2611111541 hasAuthorship W2611111541A5082689167 @default.
- W2611111541 hasBestOaLocation W26111115411 @default.
- W2611111541 hasConcept C127413603 @default.
- W2611111541 hasConcept C153180895 @default.
- W2611111541 hasConcept C154945302 @default.
- W2611111541 hasConcept C186738849 @default.
- W2611111541 hasConcept C2524010 @default.
- W2611111541 hasConcept C33923547 @default.
- W2611111541 hasConcept C41008148 @default.
- W2611111541 hasConcept C88463610 @default.
- W2611111541 hasConceptScore W2611111541C127413603 @default.
- W2611111541 hasConceptScore W2611111541C153180895 @default.
- W2611111541 hasConceptScore W2611111541C154945302 @default.
- W2611111541 hasConceptScore W2611111541C186738849 @default.
- W2611111541 hasConceptScore W2611111541C2524010 @default.
- W2611111541 hasConceptScore W2611111541C33923547 @default.
- W2611111541 hasConceptScore W2611111541C41008148 @default.
- W2611111541 hasConceptScore W2611111541C88463610 @default.
- W2611111541 hasIssue "14" @default.
- W2611111541 hasLocation W26111115411 @default.
- W2611111541 hasOpenAccess W2611111541 @default.
- W2611111541 hasPrimaryLocation W26111115411 @default.
- W2611111541 hasRelatedWork W2033914206 @default.
- W2611111541 hasRelatedWork W2042327336 @default.
- W2611111541 hasRelatedWork W2046077695 @default.
- W2611111541 hasRelatedWork W2146076056 @default.
- W2611111541 hasRelatedWork W2163831990 @default.
- W2611111541 hasRelatedWork W2378160586 @default.
- W2611111541 hasRelatedWork W2996038082 @default.
- W2611111541 hasRelatedWork W3003836766 @default.
- W2611111541 hasRelatedWork W3047965787 @default.
- W2611111541 hasRelatedWork W3184582087 @default.
- W2611111541 hasVolume "10" @default.
- W2611111541 isParatext "false" @default.
- W2611111541 isRetracted "false" @default.
- W2611111541 magId "2611111541" @default.
- W2611111541 workType "article" @default.