Matches in SemOpenAlex for { <https://semopenalex.org/work/W2611624508> ?p ?o ?g. }
- W2611624508 endingPage "109" @default.
- W2611624508 startingPage "81" @default.
- W2611624508 abstract "In this paper we propose an autoregressive wild bootstrap method to construct confidence bands around a smooth deterministic trend. The bootstrap method is easy to implement and does not require any adjustments in the presence of missing data, which makes it particularly suitable for climatological applications. We establish the asymptotic validity of the bootstrap method for both pointwise and simultaneous confidence bands under general conditions, allowing for general patterns of missing data, serial dependence and heteroskedasticity. The finite sample properties of the method are studied in a simulation study. We use the method to study the evolution of trends in daily measurements of atmospheric ethane obtained from a weather station in the Swiss Alps, where the method can easily deal with the many missing observations due to adverse weather conditions." @default.
- W2611624508 created "2017-05-12" @default.
- W2611624508 creator A5049184927 @default.
- W2611624508 creator A5066996769 @default.
- W2611624508 creator A5070752710 @default.
- W2611624508 date "2020-01-01" @default.
- W2611624508 modified "2023-09-26" @default.
- W2611624508 title "Autoregressive wild bootstrap inference for nonparametric trends" @default.
- W2611624508 cites W1520162931 @default.
- W2611624508 cites W1917318876 @default.
- W2611624508 cites W1940719512 @default.
- W2611624508 cites W1971713783 @default.
- W2611624508 cites W1971846819 @default.
- W2611624508 cites W1974618482 @default.
- W2611624508 cites W1986316936 @default.
- W2611624508 cites W2000647303 @default.
- W2611624508 cites W2001288744 @default.
- W2611624508 cites W2008353574 @default.
- W2611624508 cites W2039441892 @default.
- W2611624508 cites W2043542886 @default.
- W2611624508 cites W2057032881 @default.
- W2611624508 cites W2071148466 @default.
- W2611624508 cites W2073438042 @default.
- W2611624508 cites W2096135738 @default.
- W2611624508 cites W2096850081 @default.
- W2611624508 cites W2101176412 @default.
- W2611624508 cites W2109415218 @default.
- W2611624508 cites W2111806183 @default.
- W2611624508 cites W2127275073 @default.
- W2611624508 cites W2157852332 @default.
- W2611624508 cites W2158154896 @default.
- W2611624508 cites W2159066409 @default.
- W2611624508 cites W2170531874 @default.
- W2611624508 cites W2327160890 @default.
- W2611624508 cites W2470926071 @default.
- W2611624508 cites W2802589724 @default.
- W2611624508 cites W3124718868 @default.
- W2611624508 doi "https://doi.org/10.1016/j.jeconom.2019.05.006" @default.
- W2611624508 hasPublicationYear "2020" @default.
- W2611624508 type Work @default.
- W2611624508 sameAs 2611624508 @default.
- W2611624508 citedByCount "18" @default.
- W2611624508 countsByYear W26116245082018 @default.
- W2611624508 countsByYear W26116245082019 @default.
- W2611624508 countsByYear W26116245082020 @default.
- W2611624508 countsByYear W26116245082021 @default.
- W2611624508 countsByYear W26116245082022 @default.
- W2611624508 countsByYear W26116245082023 @default.
- W2611624508 crossrefType "journal-article" @default.
- W2611624508 hasAuthorship W2611624508A5049184927 @default.
- W2611624508 hasAuthorship W2611624508A5066996769 @default.
- W2611624508 hasAuthorship W2611624508A5070752710 @default.
- W2611624508 hasBestOaLocation W26116245082 @default.
- W2611624508 hasConcept C101104100 @default.
- W2611624508 hasConcept C102366305 @default.
- W2611624508 hasConcept C105795698 @default.
- W2611624508 hasConcept C134306372 @default.
- W2611624508 hasConcept C140529851 @default.
- W2611624508 hasConcept C149782125 @default.
- W2611624508 hasConcept C154945302 @default.
- W2611624508 hasConcept C159877910 @default.
- W2611624508 hasConcept C162040801 @default.
- W2611624508 hasConcept C2776214188 @default.
- W2611624508 hasConcept C2777984123 @default.
- W2611624508 hasConcept C33923547 @default.
- W2611624508 hasConcept C41008148 @default.
- W2611624508 hasConcept C44249647 @default.
- W2611624508 hasConcept C9357733 @default.
- W2611624508 hasConceptScore W2611624508C101104100 @default.
- W2611624508 hasConceptScore W2611624508C102366305 @default.
- W2611624508 hasConceptScore W2611624508C105795698 @default.
- W2611624508 hasConceptScore W2611624508C134306372 @default.
- W2611624508 hasConceptScore W2611624508C140529851 @default.
- W2611624508 hasConceptScore W2611624508C149782125 @default.
- W2611624508 hasConceptScore W2611624508C154945302 @default.
- W2611624508 hasConceptScore W2611624508C159877910 @default.
- W2611624508 hasConceptScore W2611624508C162040801 @default.
- W2611624508 hasConceptScore W2611624508C2776214188 @default.
- W2611624508 hasConceptScore W2611624508C2777984123 @default.
- W2611624508 hasConceptScore W2611624508C33923547 @default.
- W2611624508 hasConceptScore W2611624508C41008148 @default.
- W2611624508 hasConceptScore W2611624508C44249647 @default.
- W2611624508 hasConceptScore W2611624508C9357733 @default.
- W2611624508 hasFunder F4320321800 @default.
- W2611624508 hasIssue "1" @default.
- W2611624508 hasLocation W26116245081 @default.
- W2611624508 hasLocation W261162450810 @default.
- W2611624508 hasLocation W261162450811 @default.
- W2611624508 hasLocation W26116245082 @default.
- W2611624508 hasLocation W26116245083 @default.
- W2611624508 hasLocation W26116245084 @default.
- W2611624508 hasLocation W26116245085 @default.
- W2611624508 hasLocation W26116245086 @default.
- W2611624508 hasLocation W26116245087 @default.
- W2611624508 hasLocation W26116245088 @default.
- W2611624508 hasLocation W26116245089 @default.
- W2611624508 hasOpenAccess W2611624508 @default.
- W2611624508 hasPrimaryLocation W26116245081 @default.