Matches in SemOpenAlex for { <https://semopenalex.org/work/W2611689752> ?p ?o ?g. }
- W2611689752 abstract "Minerals of the Fe-As-S system are the main components of Au ores in many hydrothermal deposits, including Carlin-type Au deposits, volcanogenic massive sulfide deposits, epithermal, mesothermal, sedimentary-hosted systems, and Archean Au lodes. The “invisible” (or refractory) form of Au is present in all types of hydrothermal ores and often predominates. Knowledge of the chemical state of “invisible” Au (local atomic environment/structural position, electronic structure, and oxidation state) is crucial for understanding the conditions of ore formation and necessary for the physical-chemical modeling of hydrothermal Au mineralization. In addition, it will help to improve the technologies of ore processing and Au extraction. Here we report an investigation of the chemical state of “invisible” Au in synthetic analogs of natural minerals (As-free pyrite FeS2, arsenopyrite FeAsS, and löllingite FeAs2). The compounds were synthesized by means of hydrothermal (pyrite) and salt flux techniques (in each case) and studied by X-ray absorption fine structure (XAFS) spectroscopy in a high-energy resolution fluorescence detection (HERFD) mode in combination with first-principles quantum chemical calculations. The content of “invisible” Au in the synthesized löllingite (800 ± 300 ppm) was much higher than that in arsenopyrite (23 ± 14 ppm). The lowest Au content was observed in zonal pyrite crystals synthesized in a salt flux. High “invisible” Au contents were observed in hydrothermal pyrite (40–90 ppm), which implies that this mineral can efficiently scavenge Au even in As-free systems. The Au content of the hydrothermal pyrite is independent of sulfur fugacity and probably corresponds to the maximum Au solubility at the experimental P-T parameters (450 °C, 1 kbar). It is shown that Au replaces Fe in the structures of löllingite, arsenopyrite, and hydrothermal pyrite. The Au-ligand distance increases by 0.14 Å (pyrite), 0.16 Å (löllingite), and 0.23 Å (As), 0.13 Å (S) (arsenopyrite) relative to the Fe-ligand distance in pure compounds. Distortions of the atomic structures are localized around Au atoms and disappear at R > ∼4 Å. Chemically bound Au occurs only in hydrothermal pyrite, whereas pyrite synthesized without hydrothermal fluid contains only Au°. The heating (metamorphism) of hydrothermal pyrite results in the decomposition of chemically bound Au and formation of Au° nuggets, which coarsen with increasing temperature. Depending on the chemical composition of the host mineral, Au can play a role of either a cation or an anion: the Bader atomic partial charge of Au decreases in the order pyrite (+0.4 e) > arsenopyrite (0) > löllingite (−0.4 e). Our results suggest that other noble metals (platinum group elements, Ag) can form a chemically bound refractory admixture in base metal sulfides/chalcogenides. The content of chemically bound noble metals can vary depending on the composition of the host mineral and ore history." @default.
- W2611689752 created "2017-05-12" @default.
- W2611689752 date "2017-05-01" @default.
- W2611689752 modified "2023-09-26" @default.
- W2611689752 title "X-ray spectroscopy study of the chemical state of “invisible” Au in synthetic minerals in the Fe-As-S system" @default.
- W2611689752 cites W11107958 @default.
- W2611689752 cites W1595263782 @default.
- W2611689752 cites W1941480524 @default.
- W2611689752 cites W1965744338 @default.
- W2611689752 cites W1969099558 @default.
- W2611689752 cites W1969725957 @default.
- W2611689752 cites W1969954382 @default.
- W2611689752 cites W1970127494 @default.
- W2611689752 cites W1979544533 @default.
- W2611689752 cites W1981495252 @default.
- W2611689752 cites W1982996670 @default.
- W2611689752 cites W1985771000 @default.
- W2611689752 cites W1992086733 @default.
- W2611689752 cites W2002613377 @default.
- W2611689752 cites W2012568198 @default.
- W2611689752 cites W2013358099 @default.
- W2611689752 cites W2018593297 @default.
- W2611689752 cites W2023692073 @default.
- W2611689752 cites W2025661500 @default.
- W2611689752 cites W2026537195 @default.
- W2611689752 cites W2042438516 @default.
- W2611689752 cites W2045160488 @default.
- W2611689752 cites W2050739254 @default.
- W2611689752 cites W2051323905 @default.
- W2611689752 cites W2053802151 @default.
- W2611689752 cites W2058286102 @default.
- W2611689752 cites W2063266856 @default.
- W2611689752 cites W2063606616 @default.
- W2611689752 cites W2064275717 @default.
- W2611689752 cites W2068994203 @default.
- W2611689752 cites W2069026416 @default.
- W2611689752 cites W2069194786 @default.
- W2611689752 cites W2070227796 @default.
- W2611689752 cites W2071213917 @default.
- W2611689752 cites W2090177433 @default.
- W2611689752 cites W2091595084 @default.
- W2611689752 cites W2120145199 @default.
- W2611689752 cites W2123826066 @default.
- W2611689752 cites W2130626244 @default.
- W2611689752 cites W2143035384 @default.
- W2611689752 cites W2144277007 @default.
- W2611689752 cites W2150793428 @default.
- W2611689752 cites W2165399803 @default.
- W2611689752 cites W2273051342 @default.
- W2611689752 cites W2321050520 @default.
- W2611689752 cites W2339791095 @default.
- W2611689752 cites W2492213701 @default.
- W2611689752 cites W2492331210 @default.
- W2611689752 cites W2603098712 @default.
- W2611689752 cites W566823146 @default.
- W2611689752 doi "https://doi.org/10.2138/am-2017-5832" @default.
- W2611689752 hasPublicationYear "2017" @default.
- W2611689752 type Work @default.
- W2611689752 sameAs 2611689752 @default.
- W2611689752 citedByCount "8" @default.
- W2611689752 countsByYear W26116897522019 @default.
- W2611689752 countsByYear W26116897522020 @default.
- W2611689752 countsByYear W26116897522021 @default.
- W2611689752 countsByYear W26116897522022 @default.
- W2611689752 countsByYear W26116897522023 @default.
- W2611689752 crossrefType "journal-article" @default.
- W2611689752 hasConcept C102404424 @default.
- W2611689752 hasConcept C127313418 @default.
- W2611689752 hasConcept C127413603 @default.
- W2611689752 hasConcept C147789679 @default.
- W2611689752 hasConcept C156622251 @default.
- W2611689752 hasConcept C165205528 @default.
- W2611689752 hasConcept C17409809 @default.
- W2611689752 hasConcept C175708663 @default.
- W2611689752 hasConcept C178790620 @default.
- W2611689752 hasConcept C185592680 @default.
- W2611689752 hasConcept C199289684 @default.
- W2611689752 hasConcept C2776062231 @default.
- W2611689752 hasConcept C2776432453 @default.
- W2611689752 hasConcept C2778188036 @default.
- W2611689752 hasConcept C2778591166 @default.
- W2611689752 hasConcept C2780184401 @default.
- W2611689752 hasConcept C2780596425 @default.
- W2611689752 hasConcept C2780756512 @default.
- W2611689752 hasConcept C42360764 @default.
- W2611689752 hasConcept C518881349 @default.
- W2611689752 hasConcept C544153396 @default.
- W2611689752 hasConcept C544778455 @default.
- W2611689752 hasConcept C67236022 @default.
- W2611689752 hasConcept C85084404 @default.
- W2611689752 hasConcept C93746451 @default.
- W2611689752 hasConceptScore W2611689752C102404424 @default.
- W2611689752 hasConceptScore W2611689752C127313418 @default.
- W2611689752 hasConceptScore W2611689752C127413603 @default.
- W2611689752 hasConceptScore W2611689752C147789679 @default.
- W2611689752 hasConceptScore W2611689752C156622251 @default.
- W2611689752 hasConceptScore W2611689752C165205528 @default.
- W2611689752 hasConceptScore W2611689752C17409809 @default.
- W2611689752 hasConceptScore W2611689752C175708663 @default.
- W2611689752 hasConceptScore W2611689752C178790620 @default.