Matches in SemOpenAlex for { <https://semopenalex.org/work/W2611757366> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2611757366 abstract "Model averaging has long been proposed as a powerful alternative to model selection in regression analysis. However, how well it performs in high-dimensional regression is still poorly understood. Recently, Ando and Li [J. Amer. Statist. Assoc. 109 (2014) 254–265] introduced a new method of model averaging that allows the number of predictors to increase as the sample size increases. One notable feature of Ando and Li’s method is the relaxation on the total model weights so that weak signals can be efficiently combined from high-dimensional linear models. It is natural to ask if Ando and Li’s method and results can be extended to nonlinear models. Because all candidate models should be treated as working models, the existence of a theoretical target of the quasi maximum likelihood estimator under model misspecification needs to be established first. In this paper, we consider generalized linear models as our candidate models. We establish a general result to show the existence of pseudo-true regression parameters under model misspecification. We derive proper conditions for the leave-one-out cross-validation weight selection to achieve asymptotic optimality. Technically, the pseudo true target parameters between working models are not linearly linked. To overcome the encountered difficulties, we employ a novel strategy of decomposing and bounding the bias and variance terms in our proof. We conduct simulations to illustrate the merits of our model averaging procedure over several existing methods, including the lasso and group lasso methods, the Akaike and Bayesian information criterion model-averaging methods and some other state-of-the-art regularization methods." @default.
- W2611757366 created "2017-05-12" @default.
- W2611757366 creator A5028320210 @default.
- W2611757366 creator A5031005122 @default.
- W2611757366 date "2017-12-01" @default.
- W2611757366 modified "2023-10-18" @default.
- W2611757366 title "A weight-relaxed model averaging approach for high-dimensional generalized linear models" @default.
- W2611757366 cites W1603903339 @default.
- W2611757366 cites W1965125844 @default.
- W2611757366 cites W2007568722 @default.
- W2611757366 cites W2025349443 @default.
- W2611757366 cites W2038845890 @default.
- W2611757366 cites W2043115469 @default.
- W2611757366 cites W2052025831 @default.
- W2611757366 cites W2056933586 @default.
- W2611757366 cites W2057331441 @default.
- W2611757366 cites W2058945758 @default.
- W2611757366 cites W2067153774 @default.
- W2611757366 cites W2067838071 @default.
- W2611757366 cites W2074682976 @default.
- W2611757366 cites W2075655242 @default.
- W2611757366 cites W2078502317 @default.
- W2611757366 cites W2108443364 @default.
- W2611757366 cites W2111051773 @default.
- W2611757366 cites W2111292279 @default.
- W2611757366 cites W2114125162 @default.
- W2611757366 cites W2122196572 @default.
- W2611757366 cites W2125251038 @default.
- W2611757366 cites W2135046866 @default.
- W2611757366 cites W2138019504 @default.
- W2611757366 cites W2158418996 @default.
- W2611757366 cites W2169847599 @default.
- W2611757366 cites W3103473643 @default.
- W2611757366 cites W3105049881 @default.
- W2611757366 cites W3106108064 @default.
- W2611757366 cites W3124660138 @default.
- W2611757366 cites W4238339773 @default.
- W2611757366 cites W4246784033 @default.
- W2611757366 doi "https://doi.org/10.1214/17-aos1538" @default.
- W2611757366 hasPublicationYear "2017" @default.
- W2611757366 type Work @default.
- W2611757366 sameAs 2611757366 @default.
- W2611757366 citedByCount "63" @default.
- W2611757366 countsByYear W26117573662018 @default.
- W2611757366 countsByYear W26117573662019 @default.
- W2611757366 countsByYear W26117573662020 @default.
- W2611757366 countsByYear W26117573662021 @default.
- W2611757366 countsByYear W26117573662022 @default.
- W2611757366 countsByYear W26117573662023 @default.
- W2611757366 crossrefType "journal-article" @default.
- W2611757366 hasAuthorship W2611757366A5028320210 @default.
- W2611757366 hasAuthorship W2611757366A5031005122 @default.
- W2611757366 hasBestOaLocation W26117573661 @default.
- W2611757366 hasConcept C105795698 @default.
- W2611757366 hasConcept C149782125 @default.
- W2611757366 hasConcept C153720581 @default.
- W2611757366 hasConcept C163175372 @default.
- W2611757366 hasConcept C28826006 @default.
- W2611757366 hasConcept C33923547 @default.
- W2611757366 hasConcept C41587187 @default.
- W2611757366 hasConceptScore W2611757366C105795698 @default.
- W2611757366 hasConceptScore W2611757366C149782125 @default.
- W2611757366 hasConceptScore W2611757366C153720581 @default.
- W2611757366 hasConceptScore W2611757366C163175372 @default.
- W2611757366 hasConceptScore W2611757366C28826006 @default.
- W2611757366 hasConceptScore W2611757366C33923547 @default.
- W2611757366 hasConceptScore W2611757366C41587187 @default.
- W2611757366 hasIssue "6" @default.
- W2611757366 hasLocation W26117573661 @default.
- W2611757366 hasLocation W26117573662 @default.
- W2611757366 hasOpenAccess W2611757366 @default.
- W2611757366 hasPrimaryLocation W26117573661 @default.
- W2611757366 hasRelatedWork W2001168328 @default.
- W2611757366 hasRelatedWork W2045956890 @default.
- W2611757366 hasRelatedWork W2057388433 @default.
- W2611757366 hasRelatedWork W2128624067 @default.
- W2611757366 hasRelatedWork W2141245559 @default.
- W2611757366 hasRelatedWork W2146428551 @default.
- W2611757366 hasRelatedWork W2290516599 @default.
- W2611757366 hasRelatedWork W2351859806 @default.
- W2611757366 hasRelatedWork W3021506327 @default.
- W2611757366 hasRelatedWork W2403204516 @default.
- W2611757366 hasVolume "45" @default.
- W2611757366 isParatext "false" @default.
- W2611757366 isRetracted "false" @default.
- W2611757366 magId "2611757366" @default.
- W2611757366 workType "article" @default.