Matches in SemOpenAlex for { <https://semopenalex.org/work/W2612088157> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2612088157 abstract "Abstract NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract Predicting Academic Success for First Semester Engineering Students Using Personality Trait Indicators Abstract The dual factors of attracting and retaining talented students in the areas of science, technology, engineering and mathematics (STEM) are critical issues for building the technology work force. When students enter colleges/universities and declare an engineering major, retention becomes the primary focus. Retention of talented students is a significant issue in engineering programs and improvement of retention rates can be a powerful tool in increasing the number of engineering graduates needed for national and global competitiveness. A number of studies have examined predictors of success for entering freshman engineering students including SAT scores and high school performance. The goal of this present work is to identify other personality factors that are critical for retention. Knowing this information, timely and targeted intervention can be applied to improve student success. The area of internal motivation is often proposed as a success factor and generally studies have neglected this area due to the difficulty in measuring and evaluating. This study considers the results of the Big Five and locus of control tests given to a group of first semester engineering freshmen. Factors of these tests were evaluated as tools to measure student motivation to succeed. The levels of these traits were then employed in a multifactor linear regression model to predict overall grade point average for the first semester. The study found that two of the Big Five factors along with locus of control were significant prediction variables for first semester grade point average. Introduction Retention of engineering students is a continuing concern among university academic programs nationwide. In improving retention, engineering educators have spent significant effort in identifying relationships between various measures of success and prediction variables in the hope of identifying focused interventions to improve student success. A variety of multi-variable models have been developed to predict various measures of student success using a range factors. These studies examined the use of high school grade point averages (GPAs) and scores on standardized tests to predict student performance.1, 2, 3 In assessing the field of engineering in particular, Takahira, et al.4, found that the primary factors associated with persistence in an engineering statics course were GPA and SAT-math scores. Another study reported a positive effect of an entrepreneurship program on GPA and retention.5 Other models have been more complex. Student success and persistence were examined by French et al. using hierarchical linear regression.6 They examined both quantitative variables (SAT scores, high school rank, university cumulative grade point average) and qualitative variables (such as academic motivation and institutional integration). For measures of success they used junior and senior GPA, university enrollment and major enrollment over six and eight semesters. The study found that SAT scores, high school rank, and gender were significant predictors of GPA and that an orientation course was not a significant factor in predicting college success." @default.
- W2612088157 created "2017-05-19" @default.
- W2612088157 creator A5006507151 @default.
- W2612088157 creator A5013208306 @default.
- W2612088157 creator A5047129562 @default.
- W2612088157 creator A5072740277 @default.
- W2612088157 date "2020-09-04" @default.
- W2612088157 modified "2023-09-27" @default.
- W2612088157 title "Predicting Academic Success For First Semester Engineering Students Using Personality Trait Indicators" @default.
- W2612088157 cites W120107549 @default.
- W2612088157 cites W1515002847 @default.
- W2612088157 cites W1592023566 @default.
- W2612088157 cites W1966732563 @default.
- W2612088157 cites W1984646461 @default.
- W2612088157 cites W2025046261 @default.
- W2612088157 cites W2044233098 @default.
- W2612088157 cites W2062266737 @default.
- W2612088157 cites W2084005400 @default.
- W2612088157 cites W2100826189 @default.
- W2612088157 cites W2162090451 @default.
- W2612088157 cites W2166906101 @default.
- W2612088157 cites W2263765734 @default.
- W2612088157 cites W2601023627 @default.
- W2612088157 cites W2605443038 @default.
- W2612088157 cites W2729042358 @default.
- W2612088157 cites W33733040 @default.
- W2612088157 doi "https://doi.org/10.18260/1-2--4404" @default.
- W2612088157 hasPublicationYear "2020" @default.
- W2612088157 type Work @default.
- W2612088157 sameAs 2612088157 @default.
- W2612088157 citedByCount "2" @default.
- W2612088157 countsByYear W26120881572020 @default.
- W2612088157 crossrefType "proceedings-article" @default.
- W2612088157 hasAuthorship W2612088157A5006507151 @default.
- W2612088157 hasAuthorship W2612088157A5013208306 @default.
- W2612088157 hasAuthorship W2612088157A5047129562 @default.
- W2612088157 hasAuthorship W2612088157A5072740277 @default.
- W2612088157 hasConcept C106934330 @default.
- W2612088157 hasConcept C110354214 @default.
- W2612088157 hasConcept C127413603 @default.
- W2612088157 hasConcept C145420912 @default.
- W2612088157 hasConcept C15744967 @default.
- W2612088157 hasConcept C187288502 @default.
- W2612088157 hasConcept C199360897 @default.
- W2612088157 hasConcept C2781206393 @default.
- W2612088157 hasConcept C2865642 @default.
- W2612088157 hasConcept C41008148 @default.
- W2612088157 hasConcept C5041995 @default.
- W2612088157 hasConcept C509550671 @default.
- W2612088157 hasConcept C71924100 @default.
- W2612088157 hasConcept C75630572 @default.
- W2612088157 hasConcept C77805123 @default.
- W2612088157 hasConceptScore W2612088157C106934330 @default.
- W2612088157 hasConceptScore W2612088157C110354214 @default.
- W2612088157 hasConceptScore W2612088157C127413603 @default.
- W2612088157 hasConceptScore W2612088157C145420912 @default.
- W2612088157 hasConceptScore W2612088157C15744967 @default.
- W2612088157 hasConceptScore W2612088157C187288502 @default.
- W2612088157 hasConceptScore W2612088157C199360897 @default.
- W2612088157 hasConceptScore W2612088157C2781206393 @default.
- W2612088157 hasConceptScore W2612088157C2865642 @default.
- W2612088157 hasConceptScore W2612088157C41008148 @default.
- W2612088157 hasConceptScore W2612088157C5041995 @default.
- W2612088157 hasConceptScore W2612088157C509550671 @default.
- W2612088157 hasConceptScore W2612088157C71924100 @default.
- W2612088157 hasConceptScore W2612088157C75630572 @default.
- W2612088157 hasConceptScore W2612088157C77805123 @default.
- W2612088157 hasLocation W26120881571 @default.
- W2612088157 hasOpenAccess W2612088157 @default.
- W2612088157 hasPrimaryLocation W26120881571 @default.
- W2612088157 hasRelatedWork W1979971419 @default.
- W2612088157 hasRelatedWork W1998995907 @default.
- W2612088157 hasRelatedWork W2018425266 @default.
- W2612088157 hasRelatedWork W2050496546 @default.
- W2612088157 hasRelatedWork W2073735673 @default.
- W2612088157 hasRelatedWork W2320639322 @default.
- W2612088157 hasRelatedWork W2810427095 @default.
- W2612088157 hasRelatedWork W2899084033 @default.
- W2612088157 hasRelatedWork W2908223144 @default.
- W2612088157 hasRelatedWork W2947479186 @default.
- W2612088157 isParatext "false" @default.
- W2612088157 isRetracted "false" @default.
- W2612088157 magId "2612088157" @default.
- W2612088157 workType "article" @default.