Matches in SemOpenAlex for { <https://semopenalex.org/work/W2612413108> ?p ?o ?g. }
- W2612413108 abstract "Reconstructing gene regulatory networks (GRNs) from expression data plays an important role in understanding the fundamental cellular processes and revealing the underlying relations among genes. Although many algorithms have been proposed to reconstruct GRNs, more rapid and efficient methods which can handle large-scale problems still need to be developed. The process of reconstructing GRNs can be formulated as an optimization problem, which is actually reconstructing GRNs from time series data, and the reconstructed GRNs have good ability to simulate the observed time series. This is a typical big optimization problem, since the number of variables needs to be optimized increases quadratically with the scale of GRNs, resulting an exponential increase in the number of candidate solutions. Thus, there is a legitimate need to devise methods capable of automatically reconstructing large-scale GRNs. In this paper, we use fuzzy cognitive maps (FCMs) to model GRNs, in which each node of FCMs represent a single gene. However, most of the current training algorithms for FCMs are only able to train FCMs with dozens of nodes. Here, a new evolutionary algorithm is proposed to train FCMs, which combines a dynamical multi-agent genetic algorithm (dMAGA) with the decomposition-based model, and termed as dMAGA-FCMD, which is able to deal with large-scale FCMs with up to 500 nodes. Both large-scale synthetic FCMs and the benchmark DREAM4 for reconstructing biological GRNs are used in the experiments to validate the performance of dMAGA-FCMD. The dMAGA-FCMD is compared with the other four algorithms which are all state-of-the-art FCM training algorithms, and the results show that the dMAGA-FCMD performs the best. In addition, the experimental results on FCMs with 500 nodes and DREAM4 project demonstrate that dMAGA-FCMD is capable of effectively and computationally efficiently training large-scale FCMs and GRNs." @default.
- W2612413108 created "2017-05-19" @default.
- W2612413108 creator A5032314861 @default.
- W2612413108 creator A5035282947 @default.
- W2612413108 creator A5042177280 @default.
- W2612413108 creator A5047445988 @default.
- W2612413108 date "2017-05-08" @default.
- W2612413108 modified "2023-10-18" @default.
- W2612413108 title "A time series driven decomposed evolutionary optimization approach for reconstructing large-scale gene regulatory networks based on fuzzy cognitive maps" @default.
- W2612413108 cites W1459085915 @default.
- W2612413108 cites W1495940401 @default.
- W2612413108 cites W154796128 @default.
- W2612413108 cites W1963522244 @default.
- W2612413108 cites W1967034721 @default.
- W2612413108 cites W1977575836 @default.
- W2612413108 cites W1986688807 @default.
- W2612413108 cites W2017731388 @default.
- W2612413108 cites W2020948452 @default.
- W2612413108 cites W2025203180 @default.
- W2612413108 cites W2027266048 @default.
- W2612413108 cites W2034669994 @default.
- W2612413108 cites W2048674295 @default.
- W2612413108 cites W2066031679 @default.
- W2612413108 cites W2069300506 @default.
- W2612413108 cites W2070978538 @default.
- W2612413108 cites W2078149659 @default.
- W2612413108 cites W2081232506 @default.
- W2612413108 cites W2092394555 @default.
- W2612413108 cites W2095224843 @default.
- W2612413108 cites W2109384743 @default.
- W2612413108 cites W2117607492 @default.
- W2612413108 cites W2123950200 @default.
- W2612413108 cites W2132463752 @default.
- W2612413108 cites W2135046866 @default.
- W2612413108 cites W2147730579 @default.
- W2612413108 cites W2165243821 @default.
- W2612413108 cites W2295576181 @default.
- W2612413108 cites W2306180594 @default.
- W2612413108 cites W2312599005 @default.
- W2612413108 cites W2611370172 @default.
- W2612413108 cites W92676817 @default.
- W2612413108 doi "https://doi.org/10.1186/s12859-017-1657-1" @default.
- W2612413108 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5423002" @default.
- W2612413108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28482795" @default.
- W2612413108 hasPublicationYear "2017" @default.
- W2612413108 type Work @default.
- W2612413108 sameAs 2612413108 @default.
- W2612413108 citedByCount "23" @default.
- W2612413108 countsByYear W26124131082017 @default.
- W2612413108 countsByYear W26124131082018 @default.
- W2612413108 countsByYear W26124131082019 @default.
- W2612413108 countsByYear W26124131082020 @default.
- W2612413108 countsByYear W26124131082021 @default.
- W2612413108 countsByYear W26124131082022 @default.
- W2612413108 countsByYear W26124131082023 @default.
- W2612413108 crossrefType "journal-article" @default.
- W2612413108 hasAuthorship W2612413108A5032314861 @default.
- W2612413108 hasAuthorship W2612413108A5035282947 @default.
- W2612413108 hasAuthorship W2612413108A5042177280 @default.
- W2612413108 hasAuthorship W2612413108A5047445988 @default.
- W2612413108 hasBestOaLocation W26124131081 @default.
- W2612413108 hasConcept C104317684 @default.
- W2612413108 hasConcept C11413529 @default.
- W2612413108 hasConcept C119857082 @default.
- W2612413108 hasConcept C121332964 @default.
- W2612413108 hasConcept C127413603 @default.
- W2612413108 hasConcept C13280743 @default.
- W2612413108 hasConcept C150194340 @default.
- W2612413108 hasConcept C154945302 @default.
- W2612413108 hasConcept C159149176 @default.
- W2612413108 hasConcept C185798385 @default.
- W2612413108 hasConcept C186108316 @default.
- W2612413108 hasConcept C195956108 @default.
- W2612413108 hasConcept C195975749 @default.
- W2612413108 hasConcept C205649164 @default.
- W2612413108 hasConcept C2778755073 @default.
- W2612413108 hasConcept C41008148 @default.
- W2612413108 hasConcept C5041914 @default.
- W2612413108 hasConcept C55493867 @default.
- W2612413108 hasConcept C58166 @default.
- W2612413108 hasConcept C62520636 @default.
- W2612413108 hasConcept C62611344 @default.
- W2612413108 hasConcept C66938386 @default.
- W2612413108 hasConcept C67339327 @default.
- W2612413108 hasConcept C86803240 @default.
- W2612413108 hasConceptScore W2612413108C104317684 @default.
- W2612413108 hasConceptScore W2612413108C11413529 @default.
- W2612413108 hasConceptScore W2612413108C119857082 @default.
- W2612413108 hasConceptScore W2612413108C121332964 @default.
- W2612413108 hasConceptScore W2612413108C127413603 @default.
- W2612413108 hasConceptScore W2612413108C13280743 @default.
- W2612413108 hasConceptScore W2612413108C150194340 @default.
- W2612413108 hasConceptScore W2612413108C154945302 @default.
- W2612413108 hasConceptScore W2612413108C159149176 @default.
- W2612413108 hasConceptScore W2612413108C185798385 @default.
- W2612413108 hasConceptScore W2612413108C186108316 @default.
- W2612413108 hasConceptScore W2612413108C195956108 @default.
- W2612413108 hasConceptScore W2612413108C195975749 @default.
- W2612413108 hasConceptScore W2612413108C205649164 @default.
- W2612413108 hasConceptScore W2612413108C2778755073 @default.