Matches in SemOpenAlex for { <https://semopenalex.org/work/W2612486578> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2612486578 abstract "Indoor landmarks, like corners, staircases and etc, play an important role in crowdsourcing-based indoor localization systems. This paper studies the problem of indoor corner detection and matching from crowdsourced movement trajectories. For corner detection, we adopt a machine learning approach by training a corner detector with both time and frequency features. For corner matching, we first apply the multidimensional scaling technique for matrix dimensionality reduction and then propose an improved K-means algorithm to obtain an intermediate matching result for each feature dimension. We also propose a voting algorithm to obtain the final matching result for each corner sample based on its all intermediate dimension matching results. Experiment results show that the machine learning-based corner detection can achieve much better detection performance, compared with the existing algorithms based on signal change detection. For corner matching, the proposed scheme can achieve high matching accuracy and the constructed corner fingerprints can achieve the nearest distance with their respective reference corner fingerprints." @default.
- W2612486578 created "2017-05-19" @default.
- W2612486578 creator A5029057014 @default.
- W2612486578 creator A5071384393 @default.
- W2612486578 date "2017-03-01" @default.
- W2612486578 modified "2023-09-25" @default.
- W2612486578 title "Indoor Corner Detection and Matching from Crowdsourced Movement Trajectories" @default.
- W2612486578 cites W1670904102 @default.
- W2612486578 cites W1853021488 @default.
- W2612486578 cites W1973466238 @default.
- W2612486578 cites W2015849952 @default.
- W2612486578 cites W2043502923 @default.
- W2612486578 cites W2044831755 @default.
- W2612486578 cites W2054242744 @default.
- W2612486578 cites W2054602086 @default.
- W2612486578 cites W2054780155 @default.
- W2612486578 cites W2074719126 @default.
- W2612486578 cites W2079850979 @default.
- W2612486578 cites W2138452244 @default.
- W2612486578 cites W2212541439 @default.
- W2612486578 cites W2415431271 @default.
- W2612486578 cites W2470447572 @default.
- W2612486578 cites W2603339130 @default.
- W2612486578 cites W886485206 @default.
- W2612486578 doi "https://doi.org/10.1109/wcnc.2017.7925599" @default.
- W2612486578 hasPublicationYear "2017" @default.
- W2612486578 type Work @default.
- W2612486578 sameAs 2612486578 @default.
- W2612486578 citedByCount "4" @default.
- W2612486578 countsByYear W26124865782018 @default.
- W2612486578 countsByYear W26124865782019 @default.
- W2612486578 countsByYear W26124865782021 @default.
- W2612486578 crossrefType "proceedings-article" @default.
- W2612486578 hasAuthorship W2612486578A5029057014 @default.
- W2612486578 hasAuthorship W2612486578A5071384393 @default.
- W2612486578 hasConcept C105795698 @default.
- W2612486578 hasConcept C107038049 @default.
- W2612486578 hasConcept C121332964 @default.
- W2612486578 hasConcept C1276947 @default.
- W2612486578 hasConcept C13662910 @default.
- W2612486578 hasConcept C136764020 @default.
- W2612486578 hasConcept C138885662 @default.
- W2612486578 hasConcept C154945302 @default.
- W2612486578 hasConcept C165064840 @default.
- W2612486578 hasConcept C2780226923 @default.
- W2612486578 hasConcept C31972630 @default.
- W2612486578 hasConcept C33923547 @default.
- W2612486578 hasConcept C41008148 @default.
- W2612486578 hasConcept C62230096 @default.
- W2612486578 hasConceptScore W2612486578C105795698 @default.
- W2612486578 hasConceptScore W2612486578C107038049 @default.
- W2612486578 hasConceptScore W2612486578C121332964 @default.
- W2612486578 hasConceptScore W2612486578C1276947 @default.
- W2612486578 hasConceptScore W2612486578C13662910 @default.
- W2612486578 hasConceptScore W2612486578C136764020 @default.
- W2612486578 hasConceptScore W2612486578C138885662 @default.
- W2612486578 hasConceptScore W2612486578C154945302 @default.
- W2612486578 hasConceptScore W2612486578C165064840 @default.
- W2612486578 hasConceptScore W2612486578C2780226923 @default.
- W2612486578 hasConceptScore W2612486578C31972630 @default.
- W2612486578 hasConceptScore W2612486578C33923547 @default.
- W2612486578 hasConceptScore W2612486578C41008148 @default.
- W2612486578 hasConceptScore W2612486578C62230096 @default.
- W2612486578 hasLocation W26124865781 @default.
- W2612486578 hasOpenAccess W2612486578 @default.
- W2612486578 hasPrimaryLocation W26124865781 @default.
- W2612486578 hasRelatedWork W1562288862 @default.
- W2612486578 hasRelatedWork W1978753601 @default.
- W2612486578 hasRelatedWork W1995188412 @default.
- W2612486578 hasRelatedWork W2000407620 @default.
- W2612486578 hasRelatedWork W2077406767 @default.
- W2612486578 hasRelatedWork W2095989223 @default.
- W2612486578 hasRelatedWork W2128391139 @default.
- W2612486578 hasRelatedWork W2391245565 @default.
- W2612486578 hasRelatedWork W2577364290 @default.
- W2612486578 hasRelatedWork W2786306966 @default.
- W2612486578 isParatext "false" @default.
- W2612486578 isRetracted "false" @default.
- W2612486578 magId "2612486578" @default.
- W2612486578 workType "article" @default.