Matches in SemOpenAlex for { <https://semopenalex.org/work/W2612751012> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2612751012 endingPage "82" @default.
- W2612751012 startingPage "69" @default.
- W2612751012 abstract "Biomass monitoring, specifically, detecting changes in the biomass or vegetation of a geographical region, is vital for studying the carbon cycle of the system and has significant implications in the context of understanding climate change and its impacts. Recently, several time series change detection methods have been proposed to identify land cover changes in temporal profiles (time series) of vegetation collected using remote sensing instruments. In this paper, we adapt Gaussian process regression to detect changes in such time series in an online fashion. While Gaussian process (GP) has been widely used as a kernel based learning method for regression and classification, their applicability to massive spatio-temporal data sets, such as remote sensing data, has been limited owing to the high computational costs involved. In our previous work we proposed an efficient Toeplitz matrix based solution for scalable GP parameter estimation. In this paper we apply these solutions to a GP based change detection algorithm. The proposed change detection algorithm requires a memory footprint which is linear in the length of the input time series and runs in time which is quadratic to the length of the input time series. Experimental results show that both serial and parallel implementations of our proposed method achieve significant speedups over the serial implementation. Finally, we demonstrate the effectiveness of the proposed change detection method in identifying changes in Normalized Difference Vegetation Index (NDVI) data. Increasing availability of high resolution remote sensing data has encouraged researchers to extract knowledge from these massive spatio-temporal data sets in order to solve different problems pertain- ing to our ecosystem. Land use land cover (LULC) monitoring, specifically identifying changes in land cover, is one such problem that has significant applications in detecting deforestation, crop ro- tation, urbanization, forest fires, and other such phenomenon. The knowledge about the land cover changes can then be used by policy makers to take important decisions regarding urban planning, natural resource management, water source management, etc. In this paper we focus on the problem of identifying changes in the biomass or vegetation in a geographical region. Biomass is defined as the mass of living biological organisms in a unit area. In the context of this study, we restrict our monitoring to plant (specifically crop) biomass over large geographic regions. In recent years biomass monitoring is increasingly becoming important, as biomass is a great source of renewable energy. Moreover, biomass monitoring is also important from the changing climate perspective, as changes in climate are reflected in the change in biomass, and vice versa. The knowledge about biomass changes over time across a geographical region can be used estimate quantitative biophysical parameters which can be incorporated into global climate models. The launch of NASA's Terra satellite in December of 1999, with the Moderate Resolution Imag- ing Spectroradiometer (MODIS) instrument aboard, introduced a new opportunity for terrestrial remote sensing. MODIS data sets represent a new and improved capability for terrestrial satel- lite remote sensing aimed at meeting the needs of global change research. With thirty-six spectral bands, seven designed for use in terrestrial application, MODIS provides daily coverage, of moderate spatial resolution, of most areas on the earth. Land cover products are available in 250m, 500m, or 1000m resolutions (17). MODIS land products are generally available within weeks or even days" @default.
- W2612751012 created "2017-05-19" @default.
- W2612751012 creator A5003851078 @default.
- W2612751012 creator A5065410886 @default.
- W2612751012 date "2010-01-01" @default.
- W2612751012 modified "2023-09-27" @default.
- W2612751012 title "Scalable Time Series Change Detection for Biomass Monitoring Using Gaussian Process." @default.
- W2612751012 hasPublicationYear "2010" @default.
- W2612751012 type Work @default.
- W2612751012 sameAs 2612751012 @default.
- W2612751012 citedByCount "1" @default.
- W2612751012 countsByYear W26127510122015 @default.
- W2612751012 crossrefType "journal-article" @default.
- W2612751012 hasAuthorship W2612751012A5003851078 @default.
- W2612751012 hasAuthorship W2612751012A5065410886 @default.
- W2612751012 hasConcept C11413529 @default.
- W2612751012 hasConcept C119857082 @default.
- W2612751012 hasConcept C121332964 @default.
- W2612751012 hasConcept C124101348 @default.
- W2612751012 hasConcept C127413603 @default.
- W2612751012 hasConcept C132651083 @default.
- W2612751012 hasConcept C143724316 @default.
- W2612751012 hasConcept C146978453 @default.
- W2612751012 hasConcept C151406439 @default.
- W2612751012 hasConcept C151730666 @default.
- W2612751012 hasConcept C1549246 @default.
- W2612751012 hasConcept C154945302 @default.
- W2612751012 hasConcept C163716315 @default.
- W2612751012 hasConcept C166957645 @default.
- W2612751012 hasConcept C18903297 @default.
- W2612751012 hasConcept C19269812 @default.
- W2612751012 hasConcept C203595873 @default.
- W2612751012 hasConcept C205649164 @default.
- W2612751012 hasConcept C2777007095 @default.
- W2612751012 hasConcept C2779343474 @default.
- W2612751012 hasConcept C41008148 @default.
- W2612751012 hasConcept C48044578 @default.
- W2612751012 hasConcept C61326573 @default.
- W2612751012 hasConcept C62520636 @default.
- W2612751012 hasConcept C62649853 @default.
- W2612751012 hasConcept C77088390 @default.
- W2612751012 hasConcept C86803240 @default.
- W2612751012 hasConceptScore W2612751012C11413529 @default.
- W2612751012 hasConceptScore W2612751012C119857082 @default.
- W2612751012 hasConceptScore W2612751012C121332964 @default.
- W2612751012 hasConceptScore W2612751012C124101348 @default.
- W2612751012 hasConceptScore W2612751012C127413603 @default.
- W2612751012 hasConceptScore W2612751012C132651083 @default.
- W2612751012 hasConceptScore W2612751012C143724316 @default.
- W2612751012 hasConceptScore W2612751012C146978453 @default.
- W2612751012 hasConceptScore W2612751012C151406439 @default.
- W2612751012 hasConceptScore W2612751012C151730666 @default.
- W2612751012 hasConceptScore W2612751012C1549246 @default.
- W2612751012 hasConceptScore W2612751012C154945302 @default.
- W2612751012 hasConceptScore W2612751012C163716315 @default.
- W2612751012 hasConceptScore W2612751012C166957645 @default.
- W2612751012 hasConceptScore W2612751012C18903297 @default.
- W2612751012 hasConceptScore W2612751012C19269812 @default.
- W2612751012 hasConceptScore W2612751012C203595873 @default.
- W2612751012 hasConceptScore W2612751012C205649164 @default.
- W2612751012 hasConceptScore W2612751012C2777007095 @default.
- W2612751012 hasConceptScore W2612751012C2779343474 @default.
- W2612751012 hasConceptScore W2612751012C41008148 @default.
- W2612751012 hasConceptScore W2612751012C48044578 @default.
- W2612751012 hasConceptScore W2612751012C61326573 @default.
- W2612751012 hasConceptScore W2612751012C62520636 @default.
- W2612751012 hasConceptScore W2612751012C62649853 @default.
- W2612751012 hasConceptScore W2612751012C77088390 @default.
- W2612751012 hasConceptScore W2612751012C86803240 @default.
- W2612751012 hasLocation W26127510121 @default.
- W2612751012 hasOpenAccess W2612751012 @default.
- W2612751012 hasPrimaryLocation W26127510121 @default.
- W2612751012 hasRelatedWork W1573952138 @default.
- W2612751012 hasRelatedWork W1965825034 @default.
- W2612751012 hasRelatedWork W1992550826 @default.
- W2612751012 hasRelatedWork W2018661207 @default.
- W2612751012 hasRelatedWork W2035073969 @default.
- W2612751012 hasRelatedWork W2074371859 @default.
- W2612751012 hasRelatedWork W2092141993 @default.
- W2612751012 hasRelatedWork W2293788236 @default.
- W2612751012 hasRelatedWork W2297472986 @default.
- W2612751012 hasRelatedWork W2357577234 @default.
- W2612751012 hasRelatedWork W2471755703 @default.
- W2612751012 hasRelatedWork W2752391910 @default.
- W2612751012 hasRelatedWork W2769053889 @default.
- W2612751012 hasRelatedWork W2884780617 @default.
- W2612751012 hasRelatedWork W2895981922 @default.
- W2612751012 hasRelatedWork W3010799778 @default.
- W2612751012 hasRelatedWork W3022470629 @default.
- W2612751012 hasRelatedWork W3049659583 @default.
- W2612751012 hasRelatedWork W3134051392 @default.
- W2612751012 hasRelatedWork W3170262936 @default.
- W2612751012 isParatext "false" @default.
- W2612751012 isRetracted "false" @default.
- W2612751012 magId "2612751012" @default.
- W2612751012 workType "article" @default.