Matches in SemOpenAlex for { <https://semopenalex.org/work/W2612804989> ?p ?o ?g. }
- W2612804989 endingPage "194" @default.
- W2612804989 startingPage "180" @default.
- W2612804989 abstract "Video-based object or face recognition services on mobile devices have recently garnered significant attention, given that video cameras are now ubiquitous in all mobile communication devices. In one of the most typical scenarios for such services, each mobile device captures and transmits video frames over wireless to a remote computing cluster (a.k.a. “cloud” computing infrastructure) that performs the heavy-duty video feature extraction and recognition tasks for a large number of mobile devices. A major challenge of such scenarios stems from the highly varying contention levels in the wireless transmission, as well as the variation in the task-scheduling congestion in the cloud. In order for each device to adapt the transmission, feature extraction and search parameters and maximize its object or face recognition rate under such contention and congestion variability, we propose a systematic learning framework based on multi-user multi-armed bandits. The performance loss under two instantiations of the proposed framework is characterized by the derivation of upper bounds for the achievable short-term and long-term loss in the expected recognition rate per face recognition attempt against the “oracle” solution that assumes a-priori knowledge of the system performance under every possible setting. Unlike well-known reinforcement learning techniques that exhibit very slow convergence when operating in highly-dynamic environments, the proposed bandit-based systematic learning quickly approaches the optimal transmission and cloud resource allocation policies based on feedback on the experienced dynamics (contention and congestion levels). To validate our approach, time-constrained simulation results are presented via: (i) contention-based H.264/AVC video streaming over IEEE 802.11 WLANs and (ii) principal-component based face recognition algorithms running under varying congestion levels of a cloud-computing infrastructure. Against state-of-the-art reinforcement learning methods, our framework is shown to provide 17.8% ~ 44.5% reduction of the number of video frames that must be processed by the cloud for recognition and 11.5% ~ 36.5% reduction in the video traffic over the WLAN." @default.
- W2612804989 created "2017-05-19" @default.
- W2612804989 creator A5008047912 @default.
- W2612804989 creator A5044396502 @default.
- W2612804989 creator A5053015746 @default.
- W2612804989 creator A5091539085 @default.
- W2612804989 date "2015-02-01" @default.
- W2612804989 modified "2023-09-25" @default.
- W2612804989 title "Bandit Framework for Systematic Learning in Wireless Video-Based Face Recognition" @default.
- W2612804989 cites W1624485851 @default.
- W2612804989 cites W1901145513 @default.
- W2612804989 cites W1988281247 @default.
- W2612804989 cites W1999314592 @default.
- W2612804989 cites W2009551863 @default.
- W2612804989 cites W2012115625 @default.
- W2612804989 cites W2014699205 @default.
- W2612804989 cites W2020228609 @default.
- W2612804989 cites W2029948740 @default.
- W2612804989 cites W2041349856 @default.
- W2612804989 cites W2061010579 @default.
- W2612804989 cites W2080149324 @default.
- W2612804989 cites W2086587845 @default.
- W2612804989 cites W2094581499 @default.
- W2612804989 cites W2096167428 @default.
- W2612804989 cites W2098465579 @default.
- W2612804989 cites W2098678086 @default.
- W2612804989 cites W2102544846 @default.
- W2612804989 cites W2112420033 @default.
- W2612804989 cites W2119850747 @default.
- W2612804989 cites W2120015434 @default.
- W2612804989 cites W2121863487 @default.
- W2612804989 cites W2121884932 @default.
- W2612804989 cites W2122662649 @default.
- W2612804989 cites W2123921160 @default.
- W2612804989 cites W2124386111 @default.
- W2612804989 cites W2125874614 @default.
- W2612804989 cites W2127274336 @default.
- W2612804989 cites W2129812935 @default.
- W2612804989 cites W2136877695 @default.
- W2612804989 cites W2140571193 @default.
- W2612804989 cites W2144092555 @default.
- W2612804989 cites W2148434045 @default.
- W2612804989 cites W2150328967 @default.
- W2612804989 cites W2151343288 @default.
- W2612804989 cites W2153344422 @default.
- W2612804989 cites W2159358849 @default.
- W2612804989 cites W2159619460 @default.
- W2612804989 cites W2162093633 @default.
- W2612804989 cites W2162598825 @default.
- W2612804989 cites W2165043427 @default.
- W2612804989 cites W2168405694 @default.
- W2612804989 cites W2172045267 @default.
- W2612804989 cites W2295801397 @default.
- W2612804989 cites W23771347 @default.
- W2612804989 cites W2519411794 @default.
- W2612804989 cites W2541147637 @default.
- W2612804989 cites W2739698496 @default.
- W2612804989 cites W2964273152 @default.
- W2612804989 doi "https://doi.org/10.1109/jstsp.2014.2330799" @default.
- W2612804989 hasPublicationYear "2015" @default.
- W2612804989 type Work @default.
- W2612804989 sameAs 2612804989 @default.
- W2612804989 citedByCount "5" @default.
- W2612804989 countsByYear W26128049892015 @default.
- W2612804989 countsByYear W26128049892016 @default.
- W2612804989 countsByYear W26128049892018 @default.
- W2612804989 countsByYear W26128049892019 @default.
- W2612804989 countsByYear W26128049892020 @default.
- W2612804989 crossrefType "journal-article" @default.
- W2612804989 hasAuthorship W2612804989A5008047912 @default.
- W2612804989 hasAuthorship W2612804989A5044396502 @default.
- W2612804989 hasAuthorship W2612804989A5053015746 @default.
- W2612804989 hasAuthorship W2612804989A5091539085 @default.
- W2612804989 hasBestOaLocation W26128049892 @default.
- W2612804989 hasConcept C111919701 @default.
- W2612804989 hasConcept C119857082 @default.
- W2612804989 hasConcept C120314980 @default.
- W2612804989 hasConcept C154945302 @default.
- W2612804989 hasConcept C162324750 @default.
- W2612804989 hasConcept C186967261 @default.
- W2612804989 hasConcept C202474056 @default.
- W2612804989 hasConcept C206729178 @default.
- W2612804989 hasConcept C21547014 @default.
- W2612804989 hasConcept C31510193 @default.
- W2612804989 hasConcept C41008148 @default.
- W2612804989 hasConcept C52622490 @default.
- W2612804989 hasConcept C555944384 @default.
- W2612804989 hasConcept C65483669 @default.
- W2612804989 hasConcept C76155785 @default.
- W2612804989 hasConcept C79403827 @default.
- W2612804989 hasConcept C79974875 @default.
- W2612804989 hasConcept C97541855 @default.
- W2612804989 hasConceptScore W2612804989C111919701 @default.
- W2612804989 hasConceptScore W2612804989C119857082 @default.
- W2612804989 hasConceptScore W2612804989C120314980 @default.
- W2612804989 hasConceptScore W2612804989C154945302 @default.
- W2612804989 hasConceptScore W2612804989C162324750 @default.
- W2612804989 hasConceptScore W2612804989C186967261 @default.