Matches in SemOpenAlex for { <https://semopenalex.org/work/W2613117632> ?p ?o ?g. }
- W2613117632 endingPage "569" @default.
- W2613117632 startingPage "558" @default.
- W2613117632 abstract "Based on a large and recently developed database of 1-min irradiance and ancillary data observations at 54 world stations, this study uses the gradient boosting Machine Learning (ML) technique to improve the process of components separation, through which the direct and diffuse solar radiation components are estimated from 1-min global horizontal irradiance data. Here, the XGBoost implementation of gradient boosting is used both with ensembles of linear and ensembles of non-linear weak prediction models. The predictions of 140 separation models of the literature are combined using XGBoost to overall improve the random errors of the predictions of the individual separation models at any of the validation sites. The minimum prediction error is essentially achieved by a combination of 26 out of the original 140 models, with no meaningful reduction in error by combining more models. Most of these 26 models use at least three inputs in addition to clearness index. In parallel, XGBoost is also used to separate the components directly from the inputs to the separation models. From the 24 possible inputs used in the original 140 separation models, only 14 are found relevant. These 14 inputs could be used with appropriate formalism to subsequently develop a better separation model. It is found that when the training and validation datasets are not collocated, the RMSD of the predictions increases, on average, 2% with respect to the case of collocated datasets. Overall, the present results indicate that a data-driven ML approach combining a limited number of existing models can be used to considerably decrease the currently large random errors associated with such models when used separately at high temporal frequency." @default.
- W2613117632 created "2017-05-19" @default.
- W2613117632 creator A5005335460 @default.
- W2613117632 creator A5037014536 @default.
- W2613117632 creator A5064889924 @default.
- W2613117632 creator A5085565913 @default.
- W2613117632 date "2017-07-01" @default.
- W2613117632 modified "2023-09-24" @default.
- W2613117632 title "Improving the separation of direct and diffuse solar radiation components using machine learning by gradient boosting" @default.
- W2613117632 cites W1678356000 @default.
- W2613117632 cites W1910012857 @default.
- W2613117632 cites W1973219769 @default.
- W2613117632 cites W1973829866 @default.
- W2613117632 cites W1981601521 @default.
- W2613117632 cites W1986821604 @default.
- W2613117632 cites W1999730640 @default.
- W2613117632 cites W2000060718 @default.
- W2613117632 cites W2012394002 @default.
- W2613117632 cites W2028612364 @default.
- W2613117632 cites W2030216404 @default.
- W2613117632 cites W2033981709 @default.
- W2613117632 cites W2040045499 @default.
- W2613117632 cites W2044937468 @default.
- W2613117632 cites W2045865753 @default.
- W2613117632 cites W2051403129 @default.
- W2613117632 cites W2055826566 @default.
- W2613117632 cites W2070493638 @default.
- W2613117632 cites W2071299290 @default.
- W2613117632 cites W2073971531 @default.
- W2613117632 cites W2074982533 @default.
- W2613117632 cites W2078753861 @default.
- W2613117632 cites W2092217598 @default.
- W2613117632 cites W2127395335 @default.
- W2613117632 cites W2149231138 @default.
- W2613117632 cites W2208788516 @default.
- W2613117632 cites W2227166189 @default.
- W2613117632 cites W3102476541 @default.
- W2613117632 cites W3104887532 @default.
- W2613117632 cites W4249358576 @default.
- W2613117632 doi "https://doi.org/10.1016/j.solener.2017.05.018" @default.
- W2613117632 hasPublicationYear "2017" @default.
- W2613117632 type Work @default.
- W2613117632 sameAs 2613117632 @default.
- W2613117632 citedByCount "57" @default.
- W2613117632 countsByYear W26131176322017 @default.
- W2613117632 countsByYear W26131176322018 @default.
- W2613117632 countsByYear W26131176322019 @default.
- W2613117632 countsByYear W26131176322020 @default.
- W2613117632 countsByYear W26131176322021 @default.
- W2613117632 countsByYear W26131176322022 @default.
- W2613117632 countsByYear W26131176322023 @default.
- W2613117632 crossrefType "journal-article" @default.
- W2613117632 hasAuthorship W2613117632A5005335460 @default.
- W2613117632 hasAuthorship W2613117632A5037014536 @default.
- W2613117632 hasAuthorship W2613117632A5064889924 @default.
- W2613117632 hasAuthorship W2613117632A5085565913 @default.
- W2613117632 hasBestOaLocation W26131176322 @default.
- W2613117632 hasConcept C11413529 @default.
- W2613117632 hasConcept C119857082 @default.
- W2613117632 hasConcept C121332964 @default.
- W2613117632 hasConcept C124101348 @default.
- W2613117632 hasConcept C154945302 @default.
- W2613117632 hasConcept C169258074 @default.
- W2613117632 hasConcept C2776061190 @default.
- W2613117632 hasConcept C41008148 @default.
- W2613117632 hasConcept C46423501 @default.
- W2613117632 hasConcept C46686674 @default.
- W2613117632 hasConcept C62520636 @default.
- W2613117632 hasConcept C70153297 @default.
- W2613117632 hasConceptScore W2613117632C11413529 @default.
- W2613117632 hasConceptScore W2613117632C119857082 @default.
- W2613117632 hasConceptScore W2613117632C121332964 @default.
- W2613117632 hasConceptScore W2613117632C124101348 @default.
- W2613117632 hasConceptScore W2613117632C154945302 @default.
- W2613117632 hasConceptScore W2613117632C169258074 @default.
- W2613117632 hasConceptScore W2613117632C2776061190 @default.
- W2613117632 hasConceptScore W2613117632C41008148 @default.
- W2613117632 hasConceptScore W2613117632C46423501 @default.
- W2613117632 hasConceptScore W2613117632C46686674 @default.
- W2613117632 hasConceptScore W2613117632C62520636 @default.
- W2613117632 hasConceptScore W2613117632C70153297 @default.
- W2613117632 hasLocation W26131176321 @default.
- W2613117632 hasLocation W26131176322 @default.
- W2613117632 hasOpenAccess W2613117632 @default.
- W2613117632 hasPrimaryLocation W26131176321 @default.
- W2613117632 hasRelatedWork W3151529617 @default.
- W2613117632 hasRelatedWork W3159988495 @default.
- W2613117632 hasRelatedWork W3200719183 @default.
- W2613117632 hasRelatedWork W4288057626 @default.
- W2613117632 hasRelatedWork W4290989698 @default.
- W2613117632 hasRelatedWork W4292969247 @default.
- W2613117632 hasRelatedWork W4293069612 @default.
- W2613117632 hasRelatedWork W4304142064 @default.
- W2613117632 hasRelatedWork W4308191010 @default.
- W2613117632 hasRelatedWork W4313488044 @default.
- W2613117632 hasVolume "150" @default.
- W2613117632 isParatext "false" @default.
- W2613117632 isRetracted "false" @default.