Matches in SemOpenAlex for { <https://semopenalex.org/work/W2613403962> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2613403962 abstract "In this thesis, I study high-dimensional nonlinear time series analysis, and its applications in financial forecasting and identifying risk in highly interconnected financial networks. The first chapter is devoted to the testing for nonlinearity in financial time series. I present a tentative classification of the various linearity tests that have been proposed in the literature. Then I investigate nonlinear features of real financial series to determine if the data justify the use of nonlinear techniques, such as those inspired by machine learning theories. In Chapter 3 & 5, I develop forecasting strategies with a high-dimensional panel of predictors while considering nonlinear dynamics. Combining these two elements is a developing area of research. In the third chapter, I propose a nonlinear generalization of the statistical factor models. As a first step, factor estimation, I employ an auto-associative neural network to estimate nonlinear factors from predictors. In the second step, forecasting equation, I apply a nonlinear function -feedforward neural networkon estimated factors for prediction. I show that these features can go beyond covariance analysis and enhance forecast accuracy. I apply this approach to forecast equity returns, and show that capturing nonlinear dynamics between equities significantly improves the quality of forecasts over current univariate and multivariate factor models. In Chapter 5, I propose a high-dimensional learning based on a shrinkage estimation of a backpropagation algorithm for skip-layer neural networks. This thesis emphasizes that linear models can be represented as special cases of these two aforementioned models, which basically means that if there is no nonlinearity between series, the proposed models will reduce to a linear model. This thesis also includes a chapter (chapter 4, with Negar Kiyavash and Seyedjalal Etesami), which in this chapter, we propose a new approach for identifying and measuring systemic risk in financial networks by introducing a nonlinearly modified Granger-causality network based on directed information graphs. The suggested method allows for nonlinearity and has predictive power over future economic activity through a time-varying network of interconnections. We apply the method to the daily returns of U.S. financial Institutions including banks, brokers and insurance companiesto identifythe level of systemic risk inthe financial sector and the contribution of each financial institution." @default.
- W2613403962 created "2017-05-19" @default.
- W2613403962 creator A5044060744 @default.
- W2613403962 date "2016-01-01" @default.
- W2613403962 modified "2023-09-24" @default.
- W2613403962 title "Essays in high-dimensional nonlinear time series analysis" @default.
- W2613403962 hasPublicationYear "2016" @default.
- W2613403962 type Work @default.
- W2613403962 sameAs 2613403962 @default.
- W2613403962 citedByCount "1" @default.
- W2613403962 countsByYear W26134039622019 @default.
- W2613403962 crossrefType "dissertation" @default.
- W2613403962 hasAuthorship W2613403962A5044060744 @default.
- W2613403962 hasConcept C105795698 @default.
- W2613403962 hasConcept C11413529 @default.
- W2613403962 hasConcept C119857082 @default.
- W2613403962 hasConcept C121332964 @default.
- W2613403962 hasConcept C134306372 @default.
- W2613403962 hasConcept C143724316 @default.
- W2613403962 hasConcept C149782125 @default.
- W2613403962 hasConcept C151406439 @default.
- W2613403962 hasConcept C151730666 @default.
- W2613403962 hasConcept C154945302 @default.
- W2613403962 hasConcept C155032097 @default.
- W2613403962 hasConcept C158622935 @default.
- W2613403962 hasConcept C161584116 @default.
- W2613403962 hasConcept C177148314 @default.
- W2613403962 hasConcept C178650346 @default.
- W2613403962 hasConcept C199163554 @default.
- W2613403962 hasConcept C33923547 @default.
- W2613403962 hasConcept C41008148 @default.
- W2613403962 hasConcept C50644808 @default.
- W2613403962 hasConcept C62520636 @default.
- W2613403962 hasConcept C86803240 @default.
- W2613403962 hasConceptScore W2613403962C105795698 @default.
- W2613403962 hasConceptScore W2613403962C11413529 @default.
- W2613403962 hasConceptScore W2613403962C119857082 @default.
- W2613403962 hasConceptScore W2613403962C121332964 @default.
- W2613403962 hasConceptScore W2613403962C134306372 @default.
- W2613403962 hasConceptScore W2613403962C143724316 @default.
- W2613403962 hasConceptScore W2613403962C149782125 @default.
- W2613403962 hasConceptScore W2613403962C151406439 @default.
- W2613403962 hasConceptScore W2613403962C151730666 @default.
- W2613403962 hasConceptScore W2613403962C154945302 @default.
- W2613403962 hasConceptScore W2613403962C155032097 @default.
- W2613403962 hasConceptScore W2613403962C158622935 @default.
- W2613403962 hasConceptScore W2613403962C161584116 @default.
- W2613403962 hasConceptScore W2613403962C177148314 @default.
- W2613403962 hasConceptScore W2613403962C178650346 @default.
- W2613403962 hasConceptScore W2613403962C199163554 @default.
- W2613403962 hasConceptScore W2613403962C33923547 @default.
- W2613403962 hasConceptScore W2613403962C41008148 @default.
- W2613403962 hasConceptScore W2613403962C50644808 @default.
- W2613403962 hasConceptScore W2613403962C62520636 @default.
- W2613403962 hasConceptScore W2613403962C86803240 @default.
- W2613403962 hasLocation W26134039621 @default.
- W2613403962 hasOpenAccess W2613403962 @default.
- W2613403962 hasPrimaryLocation W26134039621 @default.
- W2613403962 hasRelatedWork W1655284544 @default.
- W2613403962 hasRelatedWork W172953151 @default.
- W2613403962 hasRelatedWork W1954424549 @default.
- W2613403962 hasRelatedWork W2020421747 @default.
- W2613403962 hasRelatedWork W2062445441 @default.
- W2613403962 hasRelatedWork W2088341700 @default.
- W2613403962 hasRelatedWork W2089387865 @default.
- W2613403962 hasRelatedWork W2124314692 @default.
- W2613403962 hasRelatedWork W2139581634 @default.
- W2613403962 hasRelatedWork W2247411129 @default.
- W2613403962 hasRelatedWork W2583629806 @default.
- W2613403962 hasRelatedWork W2950967628 @default.
- W2613403962 hasRelatedWork W2965168328 @default.
- W2613403962 hasRelatedWork W3038970853 @default.
- W2613403962 hasRelatedWork W3106210107 @default.
- W2613403962 hasRelatedWork W3122234063 @default.
- W2613403962 hasRelatedWork W588302794 @default.
- W2613403962 hasRelatedWork W87721930 @default.
- W2613403962 hasRelatedWork W1915694674 @default.
- W2613403962 isParatext "false" @default.
- W2613403962 isRetracted "false" @default.
- W2613403962 magId "2613403962" @default.
- W2613403962 workType "dissertation" @default.