Matches in SemOpenAlex for { <https://semopenalex.org/work/W2613436601> ?p ?o ?g. }
- W2613436601 endingPage "218" @default.
- W2613436601 startingPage "210" @default.
- W2613436601 abstract "In this paper, a forward and backward feed propagation artificial neural network (BP ANN) was developed to research the quantitative relationship between silicide and fracture toughness of Nb-Si alloys. The alloys were produced by directional solidification and heat treatment. The toughness was measured by a three-point bending method used for ANN output. Five characteristic factors used for ANN input were abstracted and measured. The sequence of factors is silicide volume fraction > γ-Nb5Si3 > silicide shape > silicide size > silicide continuity by sensitivity analysis. As a result of this study, the ANN model was found to be successful for predicting toughness with high accuracy and good generalization ability within the range of 9.2–26.1 MPa m1/2. The quantitative formulas of silicide feature parameters and fracture toughness were established by transfer function, weight matrix and threshold of ANN model. The effect of each parameter and interact influence of two parameters on the fracture toughness were studied, and the technological parameters of the alloy were optimized by artificial neural network model." @default.
- W2613436601 created "2017-05-19" @default.
- W2613436601 creator A5023868028 @default.
- W2613436601 creator A5038847775 @default.
- W2613436601 creator A5039308629 @default.
- W2613436601 creator A5050454410 @default.
- W2613436601 creator A5079755672 @default.
- W2613436601 date "2017-09-01" @default.
- W2613436601 modified "2023-10-17" @default.
- W2613436601 title "Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys" @default.
- W2613436601 cites W1585920917 @default.
- W2613436601 cites W1974283773 @default.
- W2613436601 cites W1984059511 @default.
- W2613436601 cites W1985365012 @default.
- W2613436601 cites W1995777919 @default.
- W2613436601 cites W1997284061 @default.
- W2613436601 cites W1997886869 @default.
- W2613436601 cites W1998887916 @default.
- W2613436601 cites W1999488287 @default.
- W2613436601 cites W2001531859 @default.
- W2613436601 cites W2004092719 @default.
- W2613436601 cites W2007632327 @default.
- W2613436601 cites W2008587702 @default.
- W2613436601 cites W2012236371 @default.
- W2613436601 cites W2019278256 @default.
- W2613436601 cites W2027567828 @default.
- W2613436601 cites W2029234968 @default.
- W2613436601 cites W2034098501 @default.
- W2613436601 cites W2050352598 @default.
- W2613436601 cites W2056579834 @default.
- W2613436601 cites W2063968304 @default.
- W2613436601 cites W2067589737 @default.
- W2613436601 cites W2069280152 @default.
- W2613436601 cites W2069733702 @default.
- W2613436601 cites W2082037247 @default.
- W2613436601 cites W2084428555 @default.
- W2613436601 cites W2093760247 @default.
- W2613436601 cites W2135565303 @default.
- W2613436601 cites W2157700293 @default.
- W2613436601 cites W2211288922 @default.
- W2613436601 cites W2312290073 @default.
- W2613436601 cites W2317849098 @default.
- W2613436601 cites W2395404705 @default.
- W2613436601 cites W2505703080 @default.
- W2613436601 cites W2554587761 @default.
- W2613436601 cites W2558050285 @default.
- W2613436601 cites W2564288376 @default.
- W2613436601 cites W2911546748 @default.
- W2613436601 doi "https://doi.org/10.1016/j.matdes.2017.05.027" @default.
- W2613436601 hasPublicationYear "2017" @default.
- W2613436601 type Work @default.
- W2613436601 sameAs 2613436601 @default.
- W2613436601 citedByCount "42" @default.
- W2613436601 countsByYear W26134366012017 @default.
- W2613436601 countsByYear W26134366012018 @default.
- W2613436601 countsByYear W26134366012019 @default.
- W2613436601 countsByYear W26134366012020 @default.
- W2613436601 countsByYear W26134366012021 @default.
- W2613436601 countsByYear W26134366012022 @default.
- W2613436601 countsByYear W26134366012023 @default.
- W2613436601 crossrefType "journal-article" @default.
- W2613436601 hasAuthorship W2613436601A5023868028 @default.
- W2613436601 hasAuthorship W2613436601A5038847775 @default.
- W2613436601 hasAuthorship W2613436601A5039308629 @default.
- W2613436601 hasAuthorship W2613436601A5050454410 @default.
- W2613436601 hasAuthorship W2613436601A5079755672 @default.
- W2613436601 hasConcept C154945302 @default.
- W2613436601 hasConcept C159985019 @default.
- W2613436601 hasConcept C191897082 @default.
- W2613436601 hasConcept C192562407 @default.
- W2613436601 hasConcept C2779227376 @default.
- W2613436601 hasConcept C2780026712 @default.
- W2613436601 hasConcept C2780901251 @default.
- W2613436601 hasConcept C41008148 @default.
- W2613436601 hasConcept C50644808 @default.
- W2613436601 hasConcept C65590680 @default.
- W2613436601 hasConcept C97549433 @default.
- W2613436601 hasConcept C99595764 @default.
- W2613436601 hasConceptScore W2613436601C154945302 @default.
- W2613436601 hasConceptScore W2613436601C159985019 @default.
- W2613436601 hasConceptScore W2613436601C191897082 @default.
- W2613436601 hasConceptScore W2613436601C192562407 @default.
- W2613436601 hasConceptScore W2613436601C2779227376 @default.
- W2613436601 hasConceptScore W2613436601C2780026712 @default.
- W2613436601 hasConceptScore W2613436601C2780901251 @default.
- W2613436601 hasConceptScore W2613436601C41008148 @default.
- W2613436601 hasConceptScore W2613436601C50644808 @default.
- W2613436601 hasConceptScore W2613436601C65590680 @default.
- W2613436601 hasConceptScore W2613436601C97549433 @default.
- W2613436601 hasConceptScore W2613436601C99595764 @default.
- W2613436601 hasFunder F4320321001 @default.
- W2613436601 hasLocation W26134366011 @default.
- W2613436601 hasOpenAccess W2613436601 @default.
- W2613436601 hasPrimaryLocation W26134366011 @default.
- W2613436601 hasRelatedWork W1602071512 @default.
- W2613436601 hasRelatedWork W2007714221 @default.
- W2613436601 hasRelatedWork W2039999818 @default.
- W2613436601 hasRelatedWork W2076485661 @default.