Matches in SemOpenAlex for { <https://semopenalex.org/work/W2613479577> ?p ?o ?g. }
- W2613479577 endingPage "732" @default.
- W2613479577 startingPage "721" @default.
- W2613479577 abstract "With increasing availability, the use of healthcare databases as complementary data source for drug safety signal detection has been explored to circumvent the limitations inherent in spontaneous reporting. Areas covered: To review the methods proposed for safety signal detection in healthcare databases and their performance. Expert opinion: Fifteen different data mining methods were identified. They are based on disproportionality analysis, traditional pharmacoepidemiological designs (e.g. self-controlled designs), sequence symmetry analysis (SSA), sequential statistical testing, temporal association rules, supervised machine learning (SML), and the tree-based scan statistic. When considering the performance of these methods, the self-controlled designs, the SSA, and the SML seemed the most interesting approaches. In the perspective of routine signal detection from healthcare databases, pragmatic aspects such as the need for stakeholders to understand the method in order to be confident in the results must be considered. From this point of view, the SSA could appear as the most suitable method for signal detection in healthcare databases owing to its simple principle and its ability to provide a risk estimate. However, further developments, such as automated prioritization, are needed to help stakeholders handle the multiplicity of signals." @default.
- W2613479577 created "2017-05-19" @default.
- W2613479577 creator A5010670616 @default.
- W2613479577 creator A5016977392 @default.
- W2613479577 creator A5017285534 @default.
- W2613479577 creator A5027095105 @default.
- W2613479577 creator A5060088677 @default.
- W2613479577 creator A5070487088 @default.
- W2613479577 date "2017-05-15" @default.
- W2613479577 modified "2023-10-18" @default.
- W2613479577 title "Methods for safety signal detection in healthcare databases: a literature review" @default.
- W2613479577 cites W1489404947 @default.
- W2613479577 cites W1553892107 @default.
- W2613479577 cites W1558669245 @default.
- W2613479577 cites W1600992313 @default.
- W2613479577 cites W1617516138 @default.
- W2613479577 cites W1646068190 @default.
- W2613479577 cites W1858726007 @default.
- W2613479577 cites W1886975021 @default.
- W2613479577 cites W1892110920 @default.
- W2613479577 cites W1915955802 @default.
- W2613479577 cites W1919655921 @default.
- W2613479577 cites W1919911691 @default.
- W2613479577 cites W1965992514 @default.
- W2613479577 cites W1977926829 @default.
- W2613479577 cites W1988100739 @default.
- W2613479577 cites W1996073701 @default.
- W2613479577 cites W1996239270 @default.
- W2613479577 cites W2000101702 @default.
- W2613479577 cites W2002456705 @default.
- W2613479577 cites W2002602253 @default.
- W2613479577 cites W2009202077 @default.
- W2613479577 cites W2010698721 @default.
- W2613479577 cites W2012792991 @default.
- W2613479577 cites W2015487160 @default.
- W2613479577 cites W2016622142 @default.
- W2613479577 cites W2018491521 @default.
- W2613479577 cites W2022549825 @default.
- W2613479577 cites W2023071006 @default.
- W2613479577 cites W2027838470 @default.
- W2613479577 cites W2031299502 @default.
- W2613479577 cites W2031935069 @default.
- W2613479577 cites W2035138894 @default.
- W2613479577 cites W2039299300 @default.
- W2613479577 cites W2040316236 @default.
- W2613479577 cites W2047305837 @default.
- W2613479577 cites W2048374228 @default.
- W2613479577 cites W2053237747 @default.
- W2613479577 cites W2055480178 @default.
- W2613479577 cites W2058685362 @default.
- W2613479577 cites W2058837954 @default.
- W2613479577 cites W2064151584 @default.
- W2613479577 cites W2065463734 @default.
- W2613479577 cites W2074439480 @default.
- W2613479577 cites W2087467131 @default.
- W2613479577 cites W2087648442 @default.
- W2613479577 cites W2088263677 @default.
- W2613479577 cites W2088409331 @default.
- W2613479577 cites W2091815199 @default.
- W2613479577 cites W2092024040 @default.
- W2613479577 cites W2099506727 @default.
- W2613479577 cites W2105848407 @default.
- W2613479577 cites W2109826612 @default.
- W2613479577 cites W2115461720 @default.
- W2613479577 cites W2119156782 @default.
- W2613479577 cites W2120641405 @default.
- W2613479577 cites W2133680018 @default.
- W2613479577 cites W2144080401 @default.
- W2613479577 cites W2146229086 @default.
- W2613479577 cites W2150583441 @default.
- W2613479577 cites W2151916071 @default.
- W2613479577 cites W2153771773 @default.
- W2613479577 cites W2153855474 @default.
- W2613479577 cites W2155903096 @default.
- W2613479577 cites W2162708814 @default.
- W2613479577 cites W2205574826 @default.
- W2613479577 cites W2281081990 @default.
- W2613479577 cites W2296396293 @default.
- W2613479577 cites W2344424577 @default.
- W2613479577 cites W2497337344 @default.
- W2613479577 cites W256825336 @default.
- W2613479577 cites W4234295361 @default.
- W2613479577 cites W605005794 @default.
- W2613479577 doi "https://doi.org/10.1080/14740338.2017.1325463" @default.
- W2613479577 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28490262" @default.
- W2613479577 hasPublicationYear "2017" @default.
- W2613479577 type Work @default.
- W2613479577 sameAs 2613479577 @default.
- W2613479577 citedByCount "50" @default.
- W2613479577 countsByYear W26134795772017 @default.
- W2613479577 countsByYear W26134795772018 @default.
- W2613479577 countsByYear W26134795772019 @default.
- W2613479577 countsByYear W26134795772020 @default.
- W2613479577 countsByYear W26134795772021 @default.
- W2613479577 countsByYear W26134795772022 @default.
- W2613479577 countsByYear W26134795772023 @default.
- W2613479577 crossrefType "journal-article" @default.
- W2613479577 hasAuthorship W2613479577A5010670616 @default.