Matches in SemOpenAlex for { <https://semopenalex.org/work/W2613659757> ?p ?o ?g. }
- W2613659757 endingPage "22" @default.
- W2613659757 startingPage "1" @default.
- W2613659757 abstract "Stream computing paradigm, with the characteristics of real-time arrival and departure, has been admitted as a major computing paradigm in big data. Relevant theories are flourishing recently with the surge development of stream computing platforms such as Storm, Kafka and Spark. Rough set theory is an effective tool to extract knowledge with imperfect information, however, related discussions on synchronous immigration and emigration of objects have not been investigated. In this paper, stream computing learning method is proposed on the basis of existing incremental learning studies. This method aims at solving challenges resulted from simultaneous addition and deletion of objects. Based on novel learning method, a stream computing algorithm called single-object stream-computing-based three-way decisions (SS3WD) is developed. In this algorithm, the probabilistic rough set model is applied to approximate the dynamic variation of concepts. Three-way regions can be determined without multiple scans of existing information granular. Extensive experiments not only demonstrate better efficiency and robustness of SS3WD in the presence of objects streaming variation, but also illustrate that stream computing learning method is an effective computing strategy for big data." @default.
- W2613659757 created "2017-05-19" @default.
- W2613659757 creator A5013726931 @default.
- W2613659757 creator A5024791074 @default.
- W2613659757 creator A5037315478 @default.
- W2613659757 creator A5082373596 @default.
- W2613659757 date "2017-09-01" @default.
- W2613659757 modified "2023-10-17" @default.
- W2613659757 title "A three-way decisions model with probabilistic rough sets for stream computing" @default.
- W2613659757 cites W1041128124 @default.
- W2613659757 cites W14518443 @default.
- W2613659757 cites W1567021454 @default.
- W2613659757 cites W1587142208 @default.
- W2613659757 cites W1751558718 @default.
- W2613659757 cites W1808687169 @default.
- W2613659757 cites W1834402812 @default.
- W2613659757 cites W1909082580 @default.
- W2613659757 cites W1985307563 @default.
- W2613659757 cites W2000599157 @default.
- W2613659757 cites W2002373787 @default.
- W2613659757 cites W2006825961 @default.
- W2613659757 cites W2019995001 @default.
- W2613659757 cites W2030179221 @default.
- W2613659757 cites W2037053120 @default.
- W2613659757 cites W2040263621 @default.
- W2613659757 cites W2048258463 @default.
- W2613659757 cites W2048472139 @default.
- W2613659757 cites W2049003905 @default.
- W2613659757 cites W2049105561 @default.
- W2613659757 cites W2050694803 @default.
- W2613659757 cites W2053999186 @default.
- W2613659757 cites W2054449235 @default.
- W2613659757 cites W2060263593 @default.
- W2613659757 cites W2067179717 @default.
- W2613659757 cites W2072396572 @default.
- W2613659757 cites W2073411490 @default.
- W2613659757 cites W2079784780 @default.
- W2613659757 cites W2086438841 @default.
- W2613659757 cites W2089923511 @default.
- W2613659757 cites W2092845575 @default.
- W2613659757 cites W2094774132 @default.
- W2613659757 cites W2109574129 @default.
- W2613659757 cites W2141975087 @default.
- W2613659757 cites W2145020281 @default.
- W2613659757 cites W2159128662 @default.
- W2613659757 cites W2175099382 @default.
- W2613659757 cites W2190869216 @default.
- W2613659757 cites W2272142993 @default.
- W2613659757 cites W2276298621 @default.
- W2613659757 cites W2297889545 @default.
- W2613659757 cites W2305735113 @default.
- W2613659757 cites W2345465422 @default.
- W2613659757 cites W2345945873 @default.
- W2613659757 cites W2403237691 @default.
- W2613659757 cites W2463099489 @default.
- W2613659757 cites W2500526976 @default.
- W2613659757 cites W2512066509 @default.
- W2613659757 cites W4253443895 @default.
- W2613659757 cites W4255833381 @default.
- W2613659757 doi "https://doi.org/10.1016/j.ijar.2017.05.001" @default.
- W2613659757 hasPublicationYear "2017" @default.
- W2613659757 type Work @default.
- W2613659757 sameAs 2613659757 @default.
- W2613659757 citedByCount "54" @default.
- W2613659757 countsByYear W26136597572017 @default.
- W2613659757 countsByYear W26136597572018 @default.
- W2613659757 countsByYear W26136597572019 @default.
- W2613659757 countsByYear W26136597572020 @default.
- W2613659757 countsByYear W26136597572021 @default.
- W2613659757 countsByYear W26136597572022 @default.
- W2613659757 countsByYear W26136597572023 @default.
- W2613659757 crossrefType "journal-article" @default.
- W2613659757 hasAuthorship W2613659757A5013726931 @default.
- W2613659757 hasAuthorship W2613659757A5024791074 @default.
- W2613659757 hasAuthorship W2613659757A5037315478 @default.
- W2613659757 hasAuthorship W2613659757A5082373596 @default.
- W2613659757 hasConcept C104317684 @default.
- W2613659757 hasConcept C111012933 @default.
- W2613659757 hasConcept C124101348 @default.
- W2613659757 hasConcept C154945302 @default.
- W2613659757 hasConcept C17209119 @default.
- W2613659757 hasConcept C185592680 @default.
- W2613659757 hasConcept C199360897 @default.
- W2613659757 hasConcept C2778484313 @default.
- W2613659757 hasConcept C2781215313 @default.
- W2613659757 hasConcept C41008148 @default.
- W2613659757 hasConcept C49937458 @default.
- W2613659757 hasConcept C55493867 @default.
- W2613659757 hasConcept C63479239 @default.
- W2613659757 hasConcept C75684735 @default.
- W2613659757 hasConcept C76155785 @default.
- W2613659757 hasConcept C80444323 @default.
- W2613659757 hasConceptScore W2613659757C104317684 @default.
- W2613659757 hasConceptScore W2613659757C111012933 @default.
- W2613659757 hasConceptScore W2613659757C124101348 @default.
- W2613659757 hasConceptScore W2613659757C154945302 @default.
- W2613659757 hasConceptScore W2613659757C17209119 @default.
- W2613659757 hasConceptScore W2613659757C185592680 @default.