Matches in SemOpenAlex for { <https://semopenalex.org/work/W2613685344> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2613685344 abstract "Exascale computing represents the next leap in the HPC race. Reaching this level of performance is subject to several engineering challenges such as energy consumption, equipment-cooling, reliability and massive parallelism. Model-based optimization is an essential tool in the design process and control of energy efficient, reliable and thermally constrained systems. However, in the Exascale domain, model learning techniques tailored to the specific supercomputer require real measurements and must therefore handle and analyze a massive amount of data coming from the HPC monitoring infrastructure. This becomes rapidly a “big data” scale problem. The common approach where measurements are first stored in large databases and then processed is no more affordable due to the increasingly storage costs and lack of real-time support. Nowadays instead, cloud-based machine learning techniques aim to build on-line models using real-time approaches such as “stream processing” and “in-memory” computing, that avoid storage costs and enable fastdata processing. Moreover, the fast delivery and adaptation of the models to the quick data variations, make the decision stage of the optimization loop more effective and reliable. In this paper we leverage scalable, lightweight and flexible IoT technologies, such as the MQTT protocol, to build a highly scalable HPC monitoring infrastructure able to handle the massive sensor data produced by next-gen HPC components. We then show how state-of-the art tools for big data computing and analysis, such as Apache Spark, can be used to manage the huge amount of data delivered by the monitoring layer and to build adaptive models in real-time using on-line machine learning techniques." @default.
- W2613685344 created "2017-05-19" @default.
- W2613685344 creator A5029838099 @default.
- W2613685344 creator A5036407549 @default.
- W2613685344 creator A5047906923 @default.
- W2613685344 creator A5052021743 @default.
- W2613685344 date "2017-03-01" @default.
- W2613685344 modified "2023-10-16" @default.
- W2613685344 title "Continuous learning of HPC infrastructure models using big data analytics and in-memory processing tools" @default.
- W2613685344 cites W1979229768 @default.
- W2613685344 cites W2001495258 @default.
- W2613685344 cites W2003529142 @default.
- W2613685344 cites W2019675177 @default.
- W2613685344 cites W2105524676 @default.
- W2613685344 cites W2154983209 @default.
- W2613685344 cites W2499073664 @default.
- W2613685344 cites W2963330992 @default.
- W2613685344 cites W4255662230 @default.
- W2613685344 cites W841229804 @default.
- W2613685344 doi "https://doi.org/10.23919/date.2017.7927143" @default.
- W2613685344 hasPublicationYear "2017" @default.
- W2613685344 type Work @default.
- W2613685344 sameAs 2613685344 @default.
- W2613685344 citedByCount "36" @default.
- W2613685344 countsByYear W26136853442017 @default.
- W2613685344 countsByYear W26136853442018 @default.
- W2613685344 countsByYear W26136853442019 @default.
- W2613685344 countsByYear W26136853442020 @default.
- W2613685344 countsByYear W26136853442021 @default.
- W2613685344 countsByYear W26136853442022 @default.
- W2613685344 countsByYear W26136853442023 @default.
- W2613685344 crossrefType "proceedings-article" @default.
- W2613685344 hasAuthorship W2613685344A5029838099 @default.
- W2613685344 hasAuthorship W2613685344A5036407549 @default.
- W2613685344 hasAuthorship W2613685344A5047906923 @default.
- W2613685344 hasAuthorship W2613685344A5052021743 @default.
- W2613685344 hasBestOaLocation W26136853442 @default.
- W2613685344 hasConcept C107027933 @default.
- W2613685344 hasConcept C111919701 @default.
- W2613685344 hasConcept C120314980 @default.
- W2613685344 hasConcept C199360897 @default.
- W2613685344 hasConcept C2778837361 @default.
- W2613685344 hasConcept C2781215313 @default.
- W2613685344 hasConcept C41008148 @default.
- W2613685344 hasConcept C48044578 @default.
- W2613685344 hasConcept C75684735 @default.
- W2613685344 hasConcept C77088390 @default.
- W2613685344 hasConcept C79158427 @default.
- W2613685344 hasConcept C79974875 @default.
- W2613685344 hasConcept C83283714 @default.
- W2613685344 hasConceptScore W2613685344C107027933 @default.
- W2613685344 hasConceptScore W2613685344C111919701 @default.
- W2613685344 hasConceptScore W2613685344C120314980 @default.
- W2613685344 hasConceptScore W2613685344C199360897 @default.
- W2613685344 hasConceptScore W2613685344C2778837361 @default.
- W2613685344 hasConceptScore W2613685344C2781215313 @default.
- W2613685344 hasConceptScore W2613685344C41008148 @default.
- W2613685344 hasConceptScore W2613685344C48044578 @default.
- W2613685344 hasConceptScore W2613685344C75684735 @default.
- W2613685344 hasConceptScore W2613685344C77088390 @default.
- W2613685344 hasConceptScore W2613685344C79158427 @default.
- W2613685344 hasConceptScore W2613685344C79974875 @default.
- W2613685344 hasConceptScore W2613685344C83283714 @default.
- W2613685344 hasLocation W26136853441 @default.
- W2613685344 hasLocation W26136853442 @default.
- W2613685344 hasLocation W26136853443 @default.
- W2613685344 hasOpenAccess W2613685344 @default.
- W2613685344 hasPrimaryLocation W26136853441 @default.
- W2613685344 hasRelatedWork W2546696010 @default.
- W2613685344 hasRelatedWork W2889616422 @default.
- W2613685344 hasRelatedWork W2890741359 @default.
- W2613685344 hasRelatedWork W2891888092 @default.
- W2613685344 hasRelatedWork W2900588685 @default.
- W2613685344 hasRelatedWork W3217778767 @default.
- W2613685344 hasRelatedWork W4226314337 @default.
- W2613685344 hasRelatedWork W4233957875 @default.
- W2613685344 hasRelatedWork W4251235414 @default.
- W2613685344 hasRelatedWork W4301211519 @default.
- W2613685344 isParatext "false" @default.
- W2613685344 isRetracted "false" @default.
- W2613685344 magId "2613685344" @default.
- W2613685344 workType "article" @default.